2 HEWLETT-PACKARD 9830A CALCULATOR

A WORD ABOUT ...

In this book, we discuss many topics in relatively few pages. Our purpose is to enable you to:

® Do a wide variety of calculations in just a few minutes;
® Begin using the editing capabilities of the calculator;

® Use your tape cassette advantageously;

® Begin programming.

It is our intent to ‘get you on board’ fast! For this reason, some of the more difficult concepts are avoided
entirely while others are greatly simplified. But depending on your particular needs, you may have to go no
further than this book.

However, if it’s just facts you want, go to the Operating and Programming Manual. To become really proficient
using the Model 30, you will need the information in that book (especially the tape cassette and programming
information).

With the information presented in this book, you will have enough of a background to try things on your own,
which is actually the best way to attain a good working knowledge of the calculator (and don’t worry, you can’t
damage the calculator with any keyboard operation)!

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

9830A CALCULATOR SHOWN WITH 9866A PRINTER

HEWLETT—-PACKARD CALCULATOR PRODUCTS DIVISION
P.O. Box 301, Loveland, Colorado 80537, Tel. (303) 667-5000

(For World-wide Sales and Service Offices see rear of manual.)

Copyright Hewlett—Packard Company 1972

TABLE OF CONTENTS

CHAPTER 1: MEETING THE CALCULATOR 1
Introduction 1
Scanning the Keyboard 2
Clearing the Display 5
Evaluating Mistakes 6
Keyboard Calculations 6

Arithmetic Operations 7
Arithmetic Hierarchy 11
Variables 12
Editing 14
Odds and Ends 17
Functions 26
Programming Preview 28
Summary 30

CHAPTER 2: TAPE CASSETTES AT A GLANCE 33
Preparing your Cassette 34
Mark 34
Store 37
L oad 38

Summary 39

CHAPTER 3: PROGRAMMING
An Anecdote
Time Savers
A Short Example (fold-out)
Editing Hints
Usable Memory
A Shorter Example {fold-out)
Determining Memory
Additional Statements
Loose Ends
Summary
9830A Keyboard (fold-out)

CAUTION
The Model 30 can be severely damaged if it has not

been set to the correct voltage; if in doubt, please

refer to Appendix A of the Operating and Program-
ming Manual.

Chapter 1
MEETING THE CALCULATOR

INTRODUCTION

Congratulations! You now have at your disposal an extremely powerful device — the HP 9830A
Calculator; and it's easy to use! But before you start playing with it, you should make a couple
of quick checks.

If you have just received your calculator, please be sure that it's immediately inspected {refer to
Appendix A of the Operating and Programming Manual for the correct procedure). But if the
calculator has already been running in your area, just do the following:

If the calculator is not plugged in: Plug one end of the power cord into the lowest socket on
the rear panel of the calculator; plug the other end of the cord into a suitable power outlet,
such as a wall socket.

If the calculator is switched off: Set the OFF/ON switch, which is located on the front of
the calculator, to the ON position (see Figure 1).

If the calculator is already on: Check with other users to be certain that nothing important is
in the calculator ‘memory’ (there is a certain amount of space allocated to the calculator
user, which can be used for programming, etc. — and we call this the memory). After this
check, turn the calculator off, and a few seconds later turn it on again. (This procedure
erases everything that was previously in the memory area.)

When the following display appears, the calculator is ready to operate:

So much for necessities.

SCANNING THE KEYBOARD

Let's take a quick look at the Model 30 keyboard. (If you don’t have the calculator there with
you, you can refer to the fold-out of the calculator keyboard provided in the back of this book.)

The first thing you probably notice is the variety of colors on the keyboard. Keys with the same
color coding have some similar characteristics. As you become more familiar with the capabilities
of the Model 30, these similarities will become fairly obvious. There's no real benefit in
mentioning them here.

Tape Cassette

Editing Keys, etc.

Tape Cassette Door

Cassette Door Release

ROM Door Arithmetic Keys

32 -Character Display

Special Function Keys . ‘ ' OFF/ON Switch

Numeric Keys
Slide-out Cards

Alphanumeric Keys

Figure 1. The Model 30 Calculator

Then you see that the keyboard is divided into specified areas (see Figure 1). They are briefly
described below:

e Alphanumeric Keys — This area acts very much like a standard typewriter keyboard. If, for
instance, you want to' display the dollar sign, $, you must have the SHIFT key held down when
you press (i). It differs from a standard typewriter in that letters always appear in upper case
on the display.

e Numeric Keys — This area conveniently locates a set of numbers to the left of the five
arithmetic keys. If, however, you feel more comfortable using the other set of numbers {in the
alphanumeric region), go right ahead. It makes no difference to the calculator.

@ Special Function Keys — The keys in the upper left-hand region of the keyboard f, through
fo, add considerable flexibility to the calculator. However, since this flexibility is not needed
initially, we won’t discuss the keys in this book. The Operating and Programming Manual
discusses them in detail.

® The rest of the keys in the upper half of the keyboard are helpful in a variety of ways. Some
are especially useful as editing tools, while others have more specific uses. The keys are
described, in appropriate places, throughout this book.

Let's discuss two topics briefly — Clearing the Display and Evaluating Mistakes. Then we’ll be
ready to do some calculations.

CLEARING THE DISPLAY

There are several situations when information that is on the display does not have to be cleared
before new information is keyed in: for instance, after either an error message or the result of a

calculation is displayed. In both cases, the previous display is automatically cleared when
additional characters are keyed in,

But to clear the display of a line you are currently keying in, you should press:

When this key is pressed, the symbol, i, appears on the display; a new entry can then
be made. :

There may come a time when you inadvertently press some combination of keys which ‘locks
out’ the keyboard from further inputting. In this case, keeping the STOP key held down until
STOP appears on the display will generally return control of the keyboard to you. If this does
not help, as a last resort you can turn the calculator off and then on again. You can then input

as before; unfortunately, everything previously in memory is erased if you have to turn the
calculator off,

Computer
Museum

EVALUATING MISTAKES

Although the Model 30 is easy to use, mistakes still occur. Fortunately, the calculator lets us
know when we make one by making a soft beeping sound and by referencing an error message;

G)

A list of the error messages is located both on a slide-out card on the bottom of the calculator
and in the Operating and Programming Manual. This list should help you determine the cause of

any error.

KEYBOARD CALCULATIONS

Arithmetic calculations are easily performed on the Model 30. You key in your problem and
press the EXECUTE key; the result appears on the display.

The appearance of the result can vary, however, as discussed beginning on page 22: for now,
merely knowing that it can vary is sufficient.

An arithmetic expression is entered into the display by pressing keys in the same order as they
would be written on paper, one key per character or symbol; for example,

=

To get the result, press:

E
X
E
c
u
T
E

&

)

By the way, if you need to repeat a key several times, hold the key down for about two seconds

and it will rapidly repeat itself.

ARITHMETIC OPERATIONS

In the following examples, we show commonly used arithmetic operations.

NOTE

After each expression is keyed in, the EXECUTE key should be
pressed to obtain the desired results. If you make a mistake, press
CLEAR, then key in the expression again.

Addition:

LBO (

‘ 1. Subtraction:

OO0 (=

ST
glolnela
o« OEHE

Multiplication:
oo
DOEEOEEE

yAl Division:

@
)X EHUEE0E

~—

~

~

~—

~

~—

Exponentiation (raising to a power):

D)

Y

0l0IGI00(0l0
e (JOOLE CE

O dd

a ﬂ Square Root:
DEEHEE

gloololoblon
ololololola

W

Parentheses:

As shown in the previous examples, quantities within parentheses are treated as one quantity.
Thus SQR (4+7) is equivalent to /28 whereas SQR 4+7 is equivalent to /4 multiplied by 7.

Implied multiplication, e.g., 4(3+2}, is not allowed; enter 4 * (3+2) instead.

Parentheses can be nested: that is, parentheses within parentheses are allowed. Be certain that
your expression contains the same number of left parentheses as right parentheses. For instance,
press:

CEROEOOEHOEEEDLL)

The display is:

To get the result, press:

THE ARITHMETIC HIERARCHY

The arithmetic hierarchy, presented below, gives the order of execution in the calculator. It's the
same as the order commonly used in standard arithmetic.

Mathematical Functions (e.g., square root) highest precedence
Exponentiation

Multiplication, Division

Addition, Subtraction lowest precedence

The order of execution is from highest precedence to lowest precedence,

When an expression contains two or more operations at the same level in the hierarchy, the
order of execution is from left to right.

The use of parentheses enables the order of execution to be changed; e.g., in the SQR (4%7), the
‘x" is executed before the ‘SQR’ even though multiplication occupies a lower level in the
hierarchy. Consequently, adding parentheses raises the hierarchy of the enclosed operations.

If you are uncertain of the order of execution in a particular expression, you can add
parentheses for the sake of clarity, whether or not they are required.

VARIABLES

A variable is an alphanumeric representation of a number. Several uses of variables will be shown
throughout this book. There are two types of variables — ‘simple’ variables and ‘array’ variables.
In this book we are concerned only with simple variables.

A simple variable can be:

® A letter (from A through Z), or
e A letter followed by a digit (from @ through 9).1

Some examples of simple variables are: B@, C, F, F9, Q, Z6.

A variable does not exist in the calculator until it is given a value. The following two examples
assign values to the simple variables F and R4.

Let’'s press:
—

Q.

an

018100810

Notice that only the variable is allowed to the left of the equals sign.

macomam
macomxm

ooleloclal

(—_—

T Sometimes we slash zeros, @, where they might be confused with the letter, O.

Now that these variables have values, they can be used in arithmetic expressions. For example,
we can ‘execute’ the following expressions:

[
GO
GIRI0IBIBION
SFHUEBEHED) (CE.:
HOEEO®HO =
(R[4 (1=

The variable, R4, was initially assigned the value of 5. It retained that value until the expression,
R4 =R4 + 1, was executed. This technique of assigning new values to variables is commonly
used in programming, as you will see later.

JgJyuJdJddJaddagd

The other variables, array variables, although quite useful in programming, demand a greater
explanation than is warranted in this book; hence, they are discussed in the Operating and
Programming Manual.

EDITING

Now let’s see how to edit. Supposing we wish to evaluate:

142+3+4+5+6+7+8
9

On a bad day, we might begin by keying in something like:

By now we have realized that we pressed 7+8 instead of 7+8. We can easily correct the display if
we begin by pressing twice; this positions us at the ‘* as confirmed by a blinking indicator
there. Wherever this indicator is located, editing can always be performed; so we can immediately
press ‘+ thus replacing the ‘+’.

The display will now be:

L

Now the indicator is located at the 8.

To complete the expression to include the division by 9, we can first press Ews ., When we press

this key, the blinking indicator shifts one character to the right; however, since (in this case)
there are no characters to the right of the 8, the blinking disappears. We can now key in the
division by 9; then the display will be:

[

Unfortunately, this is not the correct expression since the order of execution in the arithmetic
hierarchy was not taken into account. As it now stands, 8 will be divided by 9 and the result
will be added to the summation of 1 through 7. To account for the hierarchy and obtain the
desired results, we must group the numbers 1 through 8 within parentheses.

We need a right parenthesis ‘)’ immediately after the 8 and a left parenthesis ‘(" in front of the
1. This can be accomplished with the help of the INSERT key. If initially we press twice,
the indicator is positioned at the ‘/". A space can now be opened up to the left of the blinking
indicator if we press =, The indicator then repositions itself over the blank space. So now we
can key in the right parenthesis.

[

We can then use the same procedure to key in the left parenthesis. But instead of having to press
16 times to position the indicator at the 1, we can just keep the BACK key held down;
after about two seconds, the key will repeat its operation in rapid succession. By releasing the

~30mqutef
-Musaum

key, we can stop the backward movement at its current location. Once the blinking indicator is
located at the 1, we can press (m=1 which will leave a space to the left of the 1. Now by keying
in the left parenthesis, we have the desired expression:

(o

After all that we might as well execute the expression. The result is 4.

There is one other important application of the INSERT key. Suppose we have the following

[)

Now supposing we wish to delete the 6, we would first press the BACK key until the indicator is
positioned at the 6. To delete the 6 and close the spacing between the 9 and 7, we can hold
down the SHIFT key and press (==, The display will then be:

(

The 6 could also have been deleted by pressing the space bar when the indicator was
appropriately positioned; however, this method would have left a blank space between the 9 and
7.

ODDS AND ENDS

Here are a couple of additional features that will come in handy.

The RECALL key is extremely handy! When pressed, it returns to the display the last thing that
was executed. It is most useful in two particular situations — when you execute an expression

and either an error message or a totally unexpected answer appears. In both situations, being
able to take another look at the original expression can be quite helpful.

Just press et and the original expression is returned to the display. It can then be changed
and executed if editing is required.

RESULT

Another useful tool is the RESULT key. Pressing the keys — CLEAR RESULT EXECUTE —
displays the numerical value of the last arithmetic statement that was executed. More
importantly, the RESULT key can function as an ‘accumulator’ during arithmetic operations.

For example, if we execute 2+4, 6 is displayed. Then if we press:

B \J

mocamxm

The previous result of 6 was added to 7+3. Now if we key in:

mocamm

The previous result (this time, 16) was added twice to the number 8.

When over 32 characters are being keyed in (80 characters maximum), the characters to the left
of the display are pushed out of the display region to make room for the additional characters.

To view the beginning of the input, press (the right arrow); this operation moves the
characters in the display to the right. Pressing (the left arrow) performs the reverse
operation. Either arrow key, when held down for about two seconds, repeats its operation in
rapid succession,

For example, let's add the numbers 1 through 20 inclusive; after the first 32 keystrokes, the
display is:

Now let’s input the rest of the expression; notice that after the 32n9 keystroke, each additional
keystroke causes the display to be shifted by one to the left, until finally the display is:

Now we can review the beginning of the line by holding down for a few seconds. Whenever
we are confident that the expression was keyed in correctly, we can execute it.

[

By the way, if you are keying in an extremely long line, the calculator makes a soft beeping
sound when 72 of the allowable 80 characters are input.

SIMULTANEOUS CALCULATIONS

More than one expression can be executed at the same time. If you'd like to see the results of
370.37 * 6 and 370.37 * 9 together on the display, just execute the following:

HDEOEOEEOEHEOEEEE

i

By separating the two expressions by a comma, they are both executed. Because of this feature
the use of commas within a number (such as in 19,642.73) is not allowed.

The PRT ALL key is used to obtain a printed record of your operations.

With the print-all mode in effect:
® |f you execute an expression, both the expression and the result will be printed.
® All error messages will be printed.

® Program lines being input to memory will be printed.

Pressing (a0 either establishes or cancels the print-all mode:
® If ON appears in the display, the print-all mode is established.
® If OFF appears, the print-all mode is cancelled.

By pressing &40 a second time, the ON or OFF designation is reversed.

To obtain printed records, you will have to be sure that your printer is set up properly. If it has
been operating previously, just be sure it's turned on. If it’s turned on and you cannot get a
printed record, please refer to Appendix A of the Operating and Programming Manual for printer
plug-in instructions,

If for some reason the printer isn’t operating, be sure the print-all mode is OFF; otherwise, the
display will blank out when you press the EXECUTE key (if this occurs, hold the STOP key
down until STOP appears on the display to regain control of the calculator).

There will be occasions when you want to erase all the information being stored in memory. {(If
you do programming, this will be especially true.) To erase memory, just press:

R

; ‘Scratch All’ erases everything from the user’s memory area. Turning the

G @1 . ¢ Use \
| j calculator off, then on again, performs the identical function.

N
Other variations of the SCRATCH command are described in the Operating and Programming

Manual. It should be noted, however, that SCRATCH is a very powerful command, and as such,
it should be used cautiously.

We mentioned earlier that the results of calculations can appear in different forms; the three
possibilities are standard, fixed-point, and floating-point.

When the Model 30 is first turned on, the results of calculations appear in standard form. This
form is so flexible that, in general, you aren’t even aware of it. The results of calculations appear
just as you would expect. For this reason, you will generally not even be concerned about
changing this form.

If, however, you wish to have a specified number of digits to the right of the decimal point, you
might prefer to use fixed-point form where the number of digits to the right of the decimal
point is determined by the particular fixed-point form. For instance, in fixed-3 form, the number
123.45 would appear as 123.450 .

The third form is floating-point (often called scientific notation). |f your applications are not in
the scientific field, you may rarely use it. But occasionally, for very large and small numbers, the
calculator reverts to floating-point regardiess of the specified form; for this reason, you should at
least be aware of it.

Any of these three forms can be specified:

® Standard form can be obtained by pressing:

® Fixed-point form can be set up to have as many as 11 digits following the

decimal point; if, for instance, we want our calculations to have two digits
following the decimal point, we can press:

Floating-point form also can have up to 11 digits following the decimal point.

I, for instance, we want four digits following the decimal point, we can press:

Examples a through f, below, show how the given numbers would appear in each form — and for
convenience, we will assume fixed ‘2’ and float ‘4’ as previously illustrated:

Standard Fixed ‘2’ Float ‘4’

a) 23 23 23.00 2.3000E+01
b) —-173.0 —173 ~173.00 —1.7300E+02
c) .068 0.068 0.07 6.8000E—-02
d) 12345.6 12345.6 12345.60 1.2346E+04
e) .003 3.00000E—-03 0.00 3.0000E—03
f) 7.314 7.314 7.31 7.3140E+00

As you probably noticed, floating-point form does nothing more than relocate the decimal point.
If the exponent, E, is followed by a minus sign (as in examples ¢ and e), the decimal point has
been shifted to the right by the number of places indicated by the two digits following the ‘E’.
If the sign is plus, the decimal point has been shifted to the left.

Notice too, that in example e, the standard form reverts to floating-point.

Occasionally, results are rounded depending on the specified form; for instance, in the fixed ‘2’
form, where only two digits are allowed to the right of the decimal point:

® In example c, .068 was rounded ‘up’ to .07, whereas
® In example e, .003 was rounded ‘off’ to .00.

If the first excess digit is 5 or greater (as in example c), the last allowable digit is rounded ‘up’.
If the first excess digit is less than 5 (as in example e), the last allowable digit remains the same.

Here are some examples using fixed and floating-point form:

(@) 1| e (DOE ST 0

ok Yelolola

One other thing. In both fixed and float ‘0’, the decimal point is suppressed; for example:

T

s o) olelo

-

Then, of course, to revert to standard form, press:

ENTER
EXP

We can key in numbers in floating-point form by using the ENTER EXP (Enter Exponent) key;
for exarnple, the number 2 X 10% can be keyed in many different ways; for instance, as:

&) o 2)(0)(0)®)(2) orsmpvas (2)(0)(0) (o) (o)

ACCURACY

The Model 30 calculates to 12-digit accuracy. But for you to view the results of all calculations
to the full 12-digit accuracy, it is necessary to perform calculations in float ‘11" form; for
example, in fixed ‘4" form, 3.14159265360 would be rounded to 3.1416 on the display, even
though the calculator itself retains the result as 3.14159265360 .

If you plan to use trigonometric functions, you will find the following information valuable.
Otherwise, go to the Programming Preview on page 28.

FUNCTIONS

The trigonometric functions and their corresponding mnemonics are given below:

Sine SIN Tangent TAN
Cosine COS Arctangent ATN

The angle is always assumed to be in radians (RAD) unless otherwise stated. To express an angle
in either degrees or grads, clear the display, then key in and execute either D E G or G R A D,
respectively; then input the desired expressions.

To revert to radians, clear the display, then press:
RI[A] \
()0

In addition, the value of 7 can be expressed by the keys P I. For example, with the calculator in
radians, let’s execute the following expressions:

LWMOBOLED C

HEHm
Then reverting to degrees by executing:

@)

(4]

PROGRAMMING PREVIEW

Even if you plan only to run existing programs, you should find the information in this section
useful.

Here’s a short program for you to key in. Just press the indicated keys, row by row. If you press
an incorrect key, you can use the editing keys discussed earlier to help make the corrections; or
else, press the CLEAR key, and re-enter the line. Notice that each new line is preceded by a
unique line number and that each line is entered into memory when the END OF LINE key is

pressed.
Sloles

olololaloles
DE®EHOE
DEDEEE]
SlololET

The program can be run by pressing:

-

f The number on the display just keeps increasing by 1.
|
| €

A —_——

Whenever you want to stop the program, press:

If the program didn’t run for you, YOu can correct any error by keying the appropriate line over
again,

The two key sequences just presented (RUN EXECUTE and STOP) are the general purpose
commands for running and stopping programs. But, since each program has its own specific
requirements, it will be necessary for you to obtain special instructions for each program that’s
unfamiliar to you.

We'll be using this program again in Chapter 2.

SUMMARY

Certain items have not been discussed in great detail, others have been avoided entirely; pitfalls
have not been emphasized. The best way to learn what you can and cannot do on the Model 30
is — try it; if you get an error message, press (s ; you should be able to determine the error by
comparing your expression with the error-message explanation.

If you feel comfortable using the Model 30 for arithmetic operations and you would now like to
learn how to do a few handy things with the tape cassette, you should read Chapter 2.

Chapter 3 is a quick and easy introduction to HP BASIC programming. If you are already
familiar with the BASIC language, the Operating and Programming Manual will be more useful to
you since it points out, in greater detail, additions to BASIC as well as changes.

Besides the trigonometric functions, other mathematical functions are available on the Mode! 30.
If you use these functions, the brief explanations offered below should be sufficient; in all cases,

the mnemonic, followed by an appropriate expression in parentheses will give the indicated
results:

Available Mathematical Functions

ABS (expression) determines the absolute value of the expression;

EXP (expression) raises the constant, e, to the power of the computed expression;

INT {expression)
LGT (expression)
LOG (expression)

RND (expression)

SGN (expression)

SQR (expression)

gives the expression an integer value < the value of the expression;

determines the logarithm of a positively valued expression to the base 19;

determines the logarithm of a positively valued expression to the base ‘e’;

gives a random number between 1 and @: the expression is a dummy
argument;

returns a 1 if the expression is greater than zero, returns a @ if the expression
equals zero, or returns a —1 if the expression is less than zero;

computes the square root of a positively valued expression,

Chapter 2
TAPE CASSETTES AT A GLANCE

Tape cassettes offer a convenient method of retaining information. It's easy to put information
on cassettes and once there, the information is readily accessible.

If you plan to do your own programming, then with the material presented in this chapter and
the next, you should be able to write some programs and record them on a cassette. If possible,
it will be to your advantage to obtain a cassette for your use only; then you won’'t have to
worry about other people accidentally wiping out valuable information.

The Operating and Programming Manual explains many additional tape cassette and programming
capabilities, such as ways to increase the effective memory of the calculator, that are not
discussed in this book.

In this brief chapter, we shall consider only the most basic uses of the cassette. |f you plan to
use cassettes exclusively for running existing programs, then the material presented here should
suffice.

PREPARING YOUR CASSETTE

To open the cassette door, flick the switch on the upper right-hand corner of the caiculator
keyboard. Slide in the cassette through the guide-posts on the cassette door; be sure the cassette
is right-side up with the FRONT label facing you. Push the door closed and press the key ®w),
Now you’re ready to mark some files.

But just what are cassette files? Well, they are the physical means for separating one group of
information (such as a program) from another. The first file on a tape is FILE @; subsequent
files are identified as FILE 1, FILE 2, etc. You can designate both the number of files and the
lengths of the files you want by using the MARK command (discussed next).

But if you plan only to run existing programs, the only command you will be concerned with is
LOAD, discussed on page 38.

MARK

Before you mark any files, you should make a couple of quick checks:

® First, check with other users to make sure nothing important is on the cassette.

e Then open the cassette door. if the left tab on top of the cassette has been removed, the
cassette is protected and you can’t mark on it (see Figure 2). In this case, you'll need another
cassette. Protected cassettes are discussed in the Operating and Programming Manual.

Tab Removed

Figure 2. Protected Cassette

Assuming that your cassette is available for use, close the cassette door. You can now mark some
files. Let’s begin by marking three files with 500 word lengths (relatively small) and two files
with 2000 word lengths (for considerably larger programs). Clear the display, then press:

After these three files are marked (it takes about 30 seconds), the cassette tape halts, and it
appears on the display. Then press:

WEHEEEOEREE

After about 80 seconds, these two files also are marked. So five files have been marked in all:
® FILES @, 1, and 2 have 500 word lengths;
® FILES 3 and 4 have 2000 word lengths.

If at some time in the future you would like to mark some more files, you will first have to
position the tape at the end of the previously marked files. Since FILE 4 was the last one
marked, you can position the tape at the beginning of the next file, FILE 5, by pressing:

HOMWEE

Additional files can then be marked starting at FILE 5.

Now rewind the tape by pressing: [Eew),

It’s not always necessary to rewind the tape, but it is a good habit to get into, especially before
taking a cassette out of the calculator. (The usable portion of the tape stays cleaner that way.)

Once the cassette is marked, programs can be recorded on individual files by using the STORE
command.

STORE

When you have a program in the calculator, you can immediately store it on a cassette:

® |f you have an available cassette file that is large enough to handle the size of your program,
and

® If your cassette is not protected (as mentioned earlier).

To be available, a file does not have to be empty; if the information in a file is no longer of use,
that file is available.

In Chapter 3 we show you how to determine the size of your program. If you try to store a

program into a file that’s not as large as the program size, an error message will be displayed.
Then just store it into a larger file.

Now let’s see just how to go about storing a program. If you keyed in the sample program in
Chapter 1, page 28, and if you haven't inadvertently erased the calculator memory since then,
you can store that program. (Try to run the program; if it doesn’t run, you can key it over again
— if it runs, you'll have to press the STOP key before you can store it.)

This program is very short (about 21 words) so it can be stored in any of the five files we
marked. Let's store it in FILE 2, which can accept programs up to 500 words in length. Press:

This operation can be reversed by using the LOAD command.

in about 10 seconds, all the program lines currently in memory will be recorded
on FILE 2 (and the program is still in the calculator memory, t0o).

me-comxm

LOAD

With this command, the program lines in a particular cassette file can be reproduced into the
calculator memory. Any program lines previously in memory will be erased.

If the program that’s being stored on FILE 2 of your cassette is ever erased from memory and
you then decide to run that program, just be sure the correct cassette is in the calculator, and

press:

You can now run the program as before.

In about 10 seconds, the program in FILE 2 will be loaded into memory; and the
contents of FILE 2 remain intact.

moacomxm

SUMMARY

Most of the tape cassette commands have not even been mentioned here; and the commands that
were mentioned can also be greatly expanded. For example:

® Program lines can be selectively stored on the cassette.

® Program lines in a file can be merged into memory between program lines currently there.
® Programs can be stacked in memory.

® Data, as well as programs, can be stored on the cassette.

® A listing of the information on a cassette, file-by-file, can be obtained.
® Many other useful techniques are also available.

If there is something you would like to do using the cassette, but you don’t know how to go

about it, chances are that it's possible; if so, the explanation can be found in the Operating and
Programming Manual.

However, even with only a brief explanation of the MARK, STORE, and LOAD commands given
here, you should initially be able to use these commands without the need of further

explanation. In fact, depending on your program requirements, you may never have the need to
reference the 9830A Operating and Programming Manual.

Chapter 3
PROGRAMMING

Intimidated? If you have never programmed, you may possibly be intimidated by the title of this
chapter. Don’t be! ‘Programming’ doesn’t have to be a scare word. Perhaps in the past. Not now.
Several programming languages have been developed that are really easy to use. One of these
languages, called BASIC, is used on the Model 30.

BASIC is just a simplified version of English. A BASIC program is a set of directions organized
to accomplish certain tasks. The program is made up of statements, where each statement is
generally self-evident and contains a minimum of punctuation,

Each statement must be preceded by a line number. Line numbers must appear in the program
in ascending order for ‘bookkeeping’ purposes. However, you can type your program lines in any
order since the calculator sorts the lines into numerical order as they are entered.

After a program line is written (80 characters maximum), it is entered into the calculator
memory by pressing:

@] This key is used only to enter program lines into memory. Don’t confuse it with the
EXECUTE key.

The following example is meant to show you the general techniques involved in writing a
program. It does not teach you individual program statements. The rest of the chapter is devoted

to that task.

AN ANECDOTE

According to unreliable sources, many years ago there was a prosperous kingdom where a tired
and grumpy king ruled. One day, looking for new amusement, the king sent out the following
message throughout his kingdom: “Whosoever finds a game of suitable amusement for me, shall
be granted any wish he desireth.”

Lo and behold, a voung gentleman presented the king with the game of chess. The king was
ecstatic! “What is your wish?” asked the delighted king. Replied the gentleman, ‘O wise and
noble king, all I ask is that you put down one stalk of wheat for the first square on the
chessboard, merely double this amount for the second square, then double the new amount for
the third square, and so on for the remaining squares. All I wish to be given is the amount of

wheat put down for the final chess square. »

To this the king replied, “But, generous gentleman, this is a prosperous kingdom; surelv I can do
more for you than that!”” But the gentleman was equally insistent.

PS. The kingdom produced about one billion (1,000,000,000) stalks of wheat (W) annually and
the chessboard had 64 squares (S) to be filled.

Was the gentleman really being generous?

Before keying in the following short program to find out, let’s erase memory by pressing:

Now key in the eight lines — don't forget to press the END OF LINE key at the end of each

line to put it into memory. (The program steps are discussed later; don’t worry about them for
now.)

macoOmxm

10 W=S=1

20 DISP W,S

30 IF W>1000000000 THEN 80
40 IF S=64 THEN 80

50 W=W=2

60 S=S+1

70 GOTO 20

80 END

When we execute the program, the display will flash, for each square in succession, both the
number of wheat stalks and the number of the associated square.

We have the program set up to halt in either of two cases:
® |f more than one billion stalks of wheat have to be supplied for a given square; or
® |f the 64 chess squares can be filled up without depleting the kingdom's supply.

Let's execute the program by pressing:

This is the normal sequence followed when running a program.

When this program halts, the final display is:

—

Over a billion stalks of wheat have to be placed on the 31st square!

macomxm

Needless to say, the generous gentleman was executed!

Did your program run okay? If not, you can compare it line by line with ours. Press:
!

Then the first line of your program appears on the display.

mocOmxm

() |

If this line doesn’t compare with our line 10, it can be corrected by using the editing keys
discussed in Chapter 1. (By the way, don't worry about the spacing between characters; as soon
as a line is input to memory, the calculator automatically puts the appropriate spacing between
characters.) If you edit a line, be sure to press the END OF LINE key after the appropriate

corrections have been made; otherwise, the uncorrected version of the line will remain in
memory,

When this line looks like ours, the other lines of the program can then be checked.and edited if
necessary. Just press and the next higher-numbered line appears on the display. (Pressing
displays the next lower-numbered line.) All the lines can be checked this way.

When your program is corrected, you can execute it by pressing:

Let’s look at the program steps briefly. |f after reading the following explanation, you feel we've

rushed through the example, don’t worry: we’ll discuss particular statements more thoroughly
later.

We use only two variables in this program: W (wheat stalks) and S (squares on the chessboard).
The program ‘loops’ (repeats part of itself) several times,

LOOP 1

First, the two variables, W and S, are set equal to 1 (line 10). These values are then displayed on
the calculator (line 20).

Then the program checks to see:

e |f either the number of wheat stalks on any one square is greater than 1 billion (line 30), or

® If the 64th chess square has been filled with wheat (line 40).

When either of these conditions is satisfied, the program will branch to line 80 and halt. But
since neither condition is initially satisfied, the program continues with line 50.

In this line the amount of wheat is doubled; hence the new amount of wheat equals the old
amount multiplied by 2. In line 60, the number of the chess square is increased by 1.

Then the statement in line 70 causes the program to loop back to line 20.

LOOP 2
The updated values of W and S are displayed (W = 2 and S = 2). Neither one of the two IF
conditions is true so the program again increases the value of W and S; W = 2+2and S=2+1.

LOOP 3

Loop 3 is performed, and so on. The program continues executing in the manner described
above until one of the IF conditions (line 30 or 40) is satisfied. When this happens, the program
branches to line 80 and ends. The final values for W and S remain on the display.

As we already mentioned, particular types of statements will be discussed in a few pages. For
now, let’s talk about some of the techniques you can use while keying in a program.

TIME SAVERS

The following keys can simplify program entry. A few of them have already been mentioned
briefly.

We mentioned that each program statement must be preceded by a line number. If you are
planning on keying in the lines in ascending order, you can have the line numbers automatically
displayed for you at the beginning of each new line. For example, by pressing:

The first line number, 10, immediately appears on the display. After this line is keyed

in, successive line numbers will be: 20, 30, 40 ... The spacing of 10 between
consecutive line numbers allows you to insert additional lines later,

If you wish to specify a beginning line number of, say, 45 rather than 10, press:

The first line number, 45 immediately appears on the display. Successive line
@l numbers will be: 55, 65, 75 ... The spacing of 10 between consecutive line
numbers is retained in this case.

But for a spacing between lines of, say, 5 rather than 10, press:

The first line number is 45, followed by 50, 55, 60 ... The
comma must be keyed in to separate the beginning line number
from the spacing.

£l0I00

By using automatic line numbering, you can begin with any line number and have any spacing
you want. The only stipulation is that no program line number can exceed 9999.

DELETE
LINE

The uses of this key are twofold:

macomxm

e If you are displaying a line previously entered into memory, you can press the DELETE LINE
key to erase it from memory.

e |f you are currently keying in a program (using automatic line numbering) and you make a
major mistake while keying in a line, you will probably be tempted to press the CLEAR key and
start over: don’t! If you do, automatic line numbering will cease — of course, it can be
re-initiated, but that’s extra work. Instead, press the DELETE LINE key; the statement is erased
but the line number remains intact.

Any program line currently in memory can be brought to the display. |f line 30 is in memory,
you can view it by pressing:

Line 30 is immediately displayed. If no specific line number is keyed in, the
lowest line number in memory will be displayed.

@\@

An entire program can be quickly scanned by using either T3 or C+3. Each time is
pressed, a higher-numbered program line is displayed (if there is a higher-numbered line).
performs in the opposite manner.

The RECALL key can be used in programming in the same manner that it is used in calculating.
If you attempt to enter a program line into memory and an error appears on the display, just
press (=) and the original program line is returned to the display. Then compare the line to the
specified error message and edit your line accordingly. When the line is corrected, press the END
OF LINE key to enter it into memory.

Program lines in memory can be printed out for review at any time (assuming your printer is
properly hooked up to the calculator). Just press:

mAacomxm

All the program lines currently in memory will be listed in ascending order on your
printer. If you have not erased the chess program, it will now be listed. (The number

amxm

A SHORT EXAMPLE

The program on the following fold-out averages a group of numbers. (To run this program, be
sure the printer is turned on.)

First press:

Although it’s not always necessary to erase memory before keying in a new
program, in general, it's a good habit to get into.

macomxm

Now key in the program, and to make the inputting easier, press:

Now the line numbering will be automatically done for you. Each time you press the
END OF LINE key, one line is entered into memory and the next line number appears
on the display.

macomxm

RUNNING THE PROGRAM

Now let’s run the program to see if it was entered properly. We'll use the following data for our
inputs: 30, 55, 22.8, 5.67, 11.53. Press:
Program execution begins at the lowest-numbered line. If a '?’ does not soon appear on

the display, you’d better compare your program listing with ours (see page 49). But if
the ‘?* does appear, press:

macom=xm

This inputs the first number; use the same routine with the other four numbers
each time the ‘?’ appears. When all the data is finally input, press:

00

macomxm

This causes the results to be printed and the program to be terminated.
The output should look like this:

S1010/0

meacomxm

Computer

- Museum

If your program did not execute properly, there is a good chance that an error message will now
be in the display pinpointing the type of error and the line number in which it occurred.

Whether or not you made an error in this program, the following information will come in
handy sooner or later.

EDITING HINTS

sTOP

Generally a program that is running can be immediately halted by pressing the STOP key; but if
the program was already waiting at an input statement (a '?" appears on the display), press the
keys STOP EXECUTE instead.

If no program lines are then edited, either of the following two keys can be used to continue
program execution.

The program will continue from where it was previously halted if you press either:

or (%)

With CONT EXECUTE the program will run normally, whereas with STEP it will execute only
the next statement and then stop again. Each time STEP is pressed, the line number of the next
statement to be executed will appear on the display.

By using the STEP key, you can step through the program line-by-line; this enables you to check
the program immediately after each line is executed to see if it's performing as required.

PROGRAMMING CHECKS

While the program is stopped, various things can be done. A few of the more useful capabilities
are as follows:

® Values of the variables can be checked or changed; for example, pressing:

@ will display the current value of N,

and pressing:
@ E) will change the value of N, setting it equal to 7.

® The calculator can be set to continue program execution at any line you want; if, for example,
the program was stopped at line 60 and you press:

When program execution is continued, line 110 will be
@) @ G] @ executed first.

® Many other possibilities are described in the Operating and Programming Manual.

ADDITIONAL CAPABILITIES
Many other editing commands can be used on the Model 30. Included among these are:

e TRACE — When a program is being executed, this command causes the order of program
execution to be printed (by line number).

e NORMAL — With this command, you can get out of the TRACE mode.

e REN (Renumber) — The spacing between program line numbers can be either widened or
reduced with this command.

e DEL (Delete} — Any amount of consecutive line numbers can be deleted using this command.

The mechanics of these commands are discussed in the Operating and Programming Manual.
Until you begin writing extremely long programs, you will probably find these commands of
limited use.

By using the various keys and commands discussed, you can cope with most editing situations
that will arise: and by experimenting with the various techniques, you should be able to develop
a good intuitive feeling as to when a particular technique is required.

appear on indicates
he available eémory jn the calculator, €Xpressed - (For the com
oriented, 16 bits Makes Up one word,) §j 1ust prior to t
Commang, the display is showlng the tota) i

INput the followlng €xample
available,

A SHORTER EXAMPLE

Another example program is
prov'\ded on the following
fold-out 1O show YOuU some
additional statement types
and to reinforce some of the
programming concepts you
{earned earlier.

This program s similar tO
the previous program in that
of num-

here:

a team;

ot as a team,

sis the PRINT statement.

 of the numbers is represented py X1 and the number of

r, it is necessary to set only X1 =9 (in line 10) initially,
-+ = value.

~ust be accompanied py one Of more DATA statements, in
o in the READ statement (N) is assigned the first DATA
Yer (an internal mechanism used by the ca\cu\ator) is then
" jent value (30), which will be the next value assigned in a

- a loop with line 60, the NEXT statement. gince N = 5 in
© s equivalent to the actual program statement:

30FOR\=1T05

) (N} is read, it is possible to have 38 READ statement with several variables,

The statements in the FOR ... NEXT loop {(lines 30 through 60, inclusive) are executed five
times each as | is incremented by 1 from 1 to 5. After the | = § loop is completed, the line
following the NEXT statement (line 70) is executed.

Line 40, another READ statement, assigns a new value to Z each time the FOR . . . NEXT loop
is executed. The values of Z are obtained from the DATA statement, beginning with the value
30. After each data element is taken, the data pointer moves one more element to the right.

Line 50 keeps a running total of the summation of the inputs each time a new value for Z is
read in the FOR ... NEXT loop.

When the FOR ... NEXT loop is completed, line 70, the DISP (Display) statement is executed.
Occasionally it is more convenient to put the results of calculations on the display instead of on
the printer. Whichever statement seems more appropriate for your needs is the one you should
employ.

The same rules that govern the PRINT statement also govern the DISP statement. There are,
however, two considerations: if you want a permanent record of the results you should use the
PRINT statement; also, if your output takes up more than 32 characters of space, you should
use the PRINT statement since the DISP statement can display only 32 characters at one time.

Line 80, the DATA statement, is accessed only when a READ statement is executed. So after
line 70 is executed, the DATA statement is ignored and line 90, the END statement, is executed
and the program halts.

Let’s execute the program by pressing:

[The following output should appear on the display:

When this program is run, there is no interaction between the user and the program as there is in
the first example program. This program runs through till completion and displays the results.

If you want to run the program with different data, just change line 80 by putting in your own
data. The number of items that you want to have averaged is up to you. However, the first
element of the DATA statement must accurately specify the number of items to be averaged
(N): otherwise, the program will not correctly average the numbers.

We mentioned that data can appear in one or more DATA statements. Thus, if we had 6 items
to be averaged (say, 83, 84, 92, 76, 95, 80), the following representations would all be
equivalent:

80 DATA 6, 83, 84, 92, 76, 95, 80

or

80 DATA 6
81 DATA 83, 84, 92, 76, 95, 80

or

80 DATA 6
81 DATA 83, 84, 92
82 DATA 76, 95, 80

DETERMINING MEMORY

If you'd like to know how much memory it took to input and run this program, press:

@) @ @ @ The available memory appears on the display.

To determine how many words of calculator memory this program used, subtract the available
memory (shown on the display) from the total memory (determined on page 57). It took up
only about 82 words of the total memory.

Although this is good to know, it's not the information you need to store the program on a
cassette file. The information needed is the size of the program and the 82 words not only
include this, but also include the amount of memory used to execute the program.

To determine just the program size, press:

S olololo]

The INIT (Initialize} key resets the calculator to the state it was in immediately prior to program
execution. (This is always true unless your program has a COM or DIM statement in it — these
statements and the INIT key are discussed thoroughly in the Operating and Programming

Manual.)

The maximum available memory minus the number now on
the display determines the actual program size (about 58
words).

macoOmxm

Just for practice, you might like to store this program on a cassette file. Any file that was
marked with a length large enough to contain this program can be accessed. We previously
marked FILES @ through 2 with 500 word lengths. Since these files are larger than the program
length, any of them can be used to store the program. For instance, press:

This puts a copy of the program into FILE 1 of the cassette. |f at some later
date, after the program is erased from memory, we wish to load it back into
memory, we can press:

moacomm

This will put a copy of the program back into memory.

macomxm

NOTE

Be careful not to confuse the roles of STORE and LOAD. Pressing the
incorrect sequence can result in an erased program!

ADDITIONAL STATEMENTS

There are several additional statements in BASIC, not mentioned in this book because you won't
need many of them initially. We will, however, briefly mention three more statement types that
you may find of some use as the complexity of your programs increases:

® REM (Remark) — This statement is merely a note to the programmer and as such, it can be
located wherever you want; it is not executed by the program. For example:

10 REM THIS PROGRAM IS ABOUT ...

® STOP — This statement can be used instead of END: it's particularly useful when stacking
programs (that is, having more than one program in memory at a given time). Whereas
encountering the END statement causes the program line counter to revert to the beginning line
in memory, the STOP statement will cause the program line counter to retain its position; so if
there is another program after the STOP, it can be accessed by pressing the CONTINUE and
EXECUTE keys.

® GO SUB (Go To Subroutine) and RETURN — Lines needed over and over can be accessed by
the GO SUB statement. If the subroutine begins at line 2000, you would access it with a
statement like:

80 GO SuB 2000

The last line in the subroutine is a RETURN statement; when it is encountered, the fine
following the GO SUB statement is accessed (in this case, the one after line 80).

LOOSE ENDS

The FOR ... NEXT statements discussed eariier do not have to be incremented by 1 after each
loop; for example,

10 FORD =0 TO 360 STEP5

90 NEXT D

This loop will be executed 73 times: when D = 0, 5, 10, 15, ... By adding STEP to the FOR
statement, you can increment the variable by anything you want.

The IF ... THEN statement discussed earlier uses relational and/or logical operators. For
example, in:

20 IF Z=8 THEN 60

The equals sign is a relational operator; all the following relational operators can be used in
BASIC:

equality

inequality

greater than

less than

greater than or equal to
less than or equal to

AV AVIEI

The following logical operators can also be used:

AND
OR
NOT

Logical evaluation can be quite complex; for this reason, we will avoid the topic here by
referring you to the Operating and Programming Manual, where it is thoroughly discussed.

If you are familiar with the BASIC language, you may have been surprised not to see the LET
statement. You can use the LET statement on the Model 30; however, we find it more
convenient to use the ‘implied’ LET statement. Thus:

LET X1 = X1+ X isequivalentto X1=X1+X

If you are familiar with FORTRAN programming, you will be pleased to know that we also have
FORMAT and WRITE statements, which parallel those in FORTRAN. The Operating and
Programming Manual shows how to obtain various printouts using these statements.

Sy
wwmwwwwﬁm
i

il L
L

i nmﬂmuu‘\‘l‘umm‘[‘r‘nu‘\‘!‘\‘

G

i i |
A .

i S n R W
P Mo 'y "3 oy o i s
T, R

e b
ML o e
s, 1 0, D G,
A A
T i R,
i i,

i
W
A
i iy i

R
il
R 5
[
S,
it

wwwwwmwMM“memwwmmewmw il
R R b i R
D e e R R

il WM“WWMWWWWWW“”“WWWWWWWNWWMN“NWWWWMM R
i ””WMMWWMWWMNMMMMWMMMmmwwmmwmwwwwwwmww
o \mmnm it umn\\“‘n‘ww‘\"‘v\‘\‘l‘\J)\‘\‘l‘rJ.\‘\ll\\\ "‘.‘J""“.““‘JH“JJ“““ ol ,w"\l\‘\‘\‘.‘_\‘\‘\‘u‘.‘u‘\‘\‘.“w‘w‘n m;ﬂ v

i) i b
A M
I A T

Uittt s
”WW‘MMWWMMWWWWWWWWmmM
bR R
T il

i
W

i T

T il B

s e R

R R

o iy i i i
umuumu‘w‘u‘w‘w mnmh‘\”\'\m\‘\‘}!‘\.\wl\\\l‘ql\.\‘b‘l‘l'\j‘\‘l‘il\.\‘\‘l‘\jHmuuuuu\n e

TN B N
K ”uu “»”u‘»“\u‘y‘.\\'\‘,\‘ i ”uh“w‘u““\”‘; \H‘w‘-‘i‘\u‘w‘x‘uH‘“H\umummu‘n‘mm‘u W
A
e e
i ‘mwmwmmww Wy
i it A
i 0 -

: o H‘”””“”“““”“’“H“‘k mehmumm‘m‘
it
el
. "‘ “.“"m-m‘y‘,‘
i
I w\‘ e I s .

A £
i
ﬁWWMNWMWWH

o R
LR R
(IR LKt

L """\“’W\‘l”\‘u‘n‘mu N “H“:“JH‘”‘\H\;‘r‘\‘g‘w‘r‘*‘n‘w‘x‘v‘u‘ e
il T e
WHHMM“HMWWMWMWHHN‘WWWWWmﬁw

SR memww%n,www
! s R b o, S

M- B o
\muuuumwmﬂm w‘m‘m“m“,\‘m‘ J\‘\“E‘J\'\‘,‘Eu
i

i
i
i
s
i ﬁ\‘y‘v‘iﬁ‘»‘v‘w‘(“y‘lﬁ'\\‘.‘{m“\\w
IR {11 e

it
IR
e

it
ity e

M ity

i "
i S 1
i AN ‘.””‘u‘“ Dot i

ST o ' h

i
A
A
o
i
e e o

I e o

b
Bl
m
it
it
i [T '\MAHW'HHI\
i

i
L B A
o

HMWNMMWWWMWM
meHmmva JUIETRITTRIT T
i ‘\‘H“‘\ Ilettne 1 e ! m mm !
‘mem‘ T
S,
TR l

wm‘wwmeWNﬂww

T "

o i 0
L ML
H.uwmhnm\.muu\w i

it W

S ol

s

i
i i
i ;

i)
Hm it
mu

i
“me
i i
i

il

HEWLETT-PACKARD SALES AND SERVICE OFFICES

For a complete list of world-wide, Hewlett-Packard Sales and Service Offices, please
refer to your Calculator Operating Manual.

IN THE UNITED STATES IN CANADA
CALIFORNIA QUEBEC
3939 Lankershim Bivd. Hewlett-Packard (Canada) Ltd.
North Hollywood 91604 275 Hymus Blvd.
Tel: (213) 877-1282 Pointe Claire
Tel: (514) 697-4232
GEORGIA
P.0. Box 28234 IN EUROPE
450 Interstate North SWITZERLAND
Atlanta 30328 Hewlett-Packard S.A.
Tel: (404) 436-6181 7 rue du Bois-du-Lan 7
CH-1217 Meyrin 2, GE
ILLINOIS .
5500 Howard Street Tel: 1022) 4154 00
Skokie 60076
Tel: (312) 677-0400 REST OF THE WORLD
Hewlett-Packard
NEW JERSEY INTERCONTINENTAL
W. 120 Century Road 3200 Hitlview Avenue
Paramus 07652 Palo Alto, California 94304 US.A.

Tel: (201) 265-5000 Tel: (415) 326-7000

=

