
Version 1.1

Nintendo Ultra64 RSP Programmer’s Guide

Silicon Graphics Computer Systems, Inc.
2011 N. Shoreline Blvd.
Mountain View, CA 94043-1389

©1996 Silicon Graphics Computer Systems, Inc. All Rights Reserved.
1

2

Table of Contents
1. Introduction ... 15

Document Description ... 16
What It Is .. 16
What It Is Not .. 16
Information Presentation ... 17

RSP Software Development Tools.. 19
rspasm... 19
cpp... 20
m4.. 21
buildtask... 21
rsp2elf ... 21
rsp, rspg.. 21
Gameshop Debugger (gvd) ... 22

2. RSP Architecture ... 23

Overview.. 24
Slave to the CPU.. 24
Part of the RCP .. 24
R4000 Core ... 25
Clock Speed.. 26
Vector Processor.. 26

Major R4000 Differences .. 27
Pipeline Depth... 27
No Interrupts, Exceptions, or Traps... 27
Coprocessors.. 27
Missing Instructions ... 27
3

Modified Instructions... 28

IMEM .. 29
Addressing... 29
Explicitly Managed... 29

DMEM .. 30
Addressing... 30
Explicitly Managed Resource.. 30

External Memory Map ... 31

Scalar Unit Registers... 32
SU Register Format ... 32
Register 0 .. 32
Register 31 .. 32
SU Control Registers... 33

Vector Unit Registers.. 34
VU Register Format .. 34
VU Register Addressing .. 34

Computational Instructions.. 34
Loads, Stores, and Moves ... 35

Accumulator .. 36
VU Control Registers.. 36

Vector Compare Code Register (VCC) ... 36
Vector Carry Out Register (VCO).. 37
Vector Compare Extension Register (VCE).. 38

SU and VU Interaction ... 39
Dual Issue of Instructions .. 39

RSP Instruction Set.. 40
Instruction Formats... 40

SU Instruction Format ... 40
4

Revision 1.0
VU Instruction Format .. 40
Distinguishing SU and VU Instructions .. 40
Illegal Instructions .. 40

Execution Pipeline .. 41
RSP Block Diagram... 41
Mary Jo’s Rules.. 43
Register Hazards ... 43
SU is Bypassed... 44

 Coprocessor 0 ... 45

Interrupts, Exceptions, and Processor Status.. 46
Interrupts.. 46
Exceptions .. 46
Processor Status... 46

3. Vector Unit Instructions... 47

VU Loads and Stores .. 48
Normal.. 50
Packed... 52
Transpose ... 54

VU Register Moves ... 56

VU Computational Instructions.. 57
Using Scalar Elements of a Vector Register .. 58

VU Multiply Instructions... 61
Vector Multiply Examples ... 64

VU Add Instructions .. 67
Vector Add Examples... 68
5

VU Select Instructions .. 70
Vector Select Examples .. 73

VU Logical Instructions ... 74

VU Divide Instructions .. 75
Reciprocal Table Lookup ... 77
Higher Precision Results.. 78
Vector Divide Examples... 78

4. RSP Coprocessor 0 .. 81

Register Descriptions.. 82
RSP Point of View ... 82

$c0... 83
$c1... 83
$c2, $c3 ... 83
$c4... 85
$c5... 88
$c6... 88
$c7... 88
$c8... 88
$c9... 89
$c10... 89
$c11... 90
$c12... 92
$c13... 92
$c14... 93
$c15... 93

CPU Point of View.. 93
Other RSP Addresses... 95

DMA ... 96
Alignment Restrictions... 96
Timing... 96
6

Revision 1.0
DMA Full.. 96
DMA Wait .. 96
DMA Addressing Bits .. 97
CPU Semaphore .. 97
DMA Examples ... 97

Controlling the RDP ... 100
How to Control the RDP Command FIFO .. 100
Examples .. 101

5. RSP Assembly Language ... 105

Different From Other MIPS Assembly Languages .. 106
Why? ... 106
Major Differences from the R4000 Instruction Set ... 106

Syntax ... 107
Tokens... 107
Identifiers ... 107
Constants.. 107
Operators.. 108
Comments .. 108
Program Sections... 109
Labels .. 109
Keywords ... 109
Expressions .. 110

Expression Operators .. 110
Precedence .. 111
Expression Restrictions ... 111

Registers ... 112
Vector Register Element Syntax.. 112
Program Statements.. 113

Assembly Directives ... 114
.align.. 114
7

.bound... 114

.byte... 115

.data... 115

.dmax .. 115

.end.. 116

.ent ... 116

.half.. 116

.name... 116

.print.. 117

.space... 117

.symbol ... 117

.text .. 117

.unname.. 118

.word... 118

BNF Specification of the RSP Assembly Language.. 119

6. Advanced Information... 125

 DMEM Organization and Usage ... 126
Jump Tables ... 126
Constants.. 126
Labels in DMEM ... 127
Dynamic Data .. 127
Diagnostic Information .. 127

Performance Tips .. 128
Dual Execution .. 128
Vectorization.. 128

Software Pipelining ... 130
Loop Inversion ... 131
Loop Unrolling ... 132
Program Flow of Control .. 132

Profiling RSP Code ... 133
8

Revision 1.0
Microcode Overlays.. 135
Memory System Implications ... 135
Entirely Up to You .. 135
RSP Assembler Tricks... 136
A Sample RSP Linker ... 136
Overlay Example... 138

Overlay Makefile.. 138
Overlay DMEM Initialization .. 139
Overlay Initialization Code .. 140
Overlay Decision Code ... 141
Overlay DMA Code... 141

 Controlling the RSP from the CPU.. 142
Starting RSP Tasks .. 142

RSP Boot Microcode .. 142
Hidden OS Functions ... 143

__osSpDeviceBusy ... 143
__osSpRawStartDma()... 143
__osSpRawReadIo()... 143
__osSpRawWriteIo() .. 144
__osSpGetStatus() .. 144
__osSpSetStatus() ... 144
__osSpSetPc() .. 144

Microcode Debugging Tips ... 145

RSP Yielding .. 147
Requesting a Yield ... 148
Checking for Yield ... 148
Yielding ... 148
Saving a Yielded Process .. 149
Restarting a Yield Process... 149

A. RSP Instruction Set Details .. 151
Instruction Notation Examples ... 154
9

10

List of Figures
Figure 2-1 Block Diagram of the RCP ..25
Figure 2-2 SU Register Format..32
Figure 2-3 VU Register Format ...34
Figure 2-4 VU Accumulator Format..36
Figure 2-5 VCC Register Format...37
Figure 2-6 VCO Register Format ..37
Figure 2-7 VCE Register Format ...38
Figure 2-8 RSP Block Diagram ...42
Figure 2-9 Pipeline Bypassing ...44
Figure 3-1 VU Load and Store Instruction Format..48
Figure 3-2 Long, Quad, and Rest Loads and Stores ..51
Figure 3-3 Packed Loads and Stores..53
Figure 3-4 Packed Load and Store Alignment...54
Figure 3-5 Transpose Loads and Stores...55
Figure 3-6 VU Coprocessor Moves ...56
Figure 3-7 VU Computational Instruction Format ..57
Figure 3-8 Scalar Half and Scalar Quarter Vector Register Elements...59
Figure 3-9 VU Multiply Opcode Encoding ...61
Figure 3-10 Double-precision VU Multiply ..64
Figure 3-11 VU Add Opcode Encoding ..67
Figure 3-12 VU Select Opcode Encoding ...70
Figure 3-13 VU Logical Opcode Encoding ...74
Figure 3-14 VU Divide Opcode Encoding ..75
Figure 4-1 DMA Transfer Length Encoding ...84
Figure 4-2 DMA Read/Write Example..98
Figure 4-3 DMA Wait Example ..99
Figure 4-4 RDP Initialization Using the XBUS ..101
Figure 4-5 OutputOpen Function Using the XBUS...102
Figure 4-6 OutputClose Function Using the XBUS ..103
Figure 6-1 Real-time Clock Watching on the RSP..134
11

Figure 6-2 buildtask Operation ..137
12

List of Tables
Table 3-1 VU Load/Store Instruction Summary ...49
Table 3-2 VU Computational Instruction Opcode Encoding....................................57
Table 3-3 VU Computational Instruction Element Encoding58
Table 3-4 VU Multiply Instruction Summary...61
Table 3-5 VU Add Type Encoding..67
Table 3-6 VU Select Type Encoding..70
Table 3-7 VU Logical Type Encoding ...74
Table 3-8 VU Divide Type Encoding...75
Table 3-9 VU Divide Instruction Summary...76
Table 4-1 RSP Coprocessor 0 Registers ..82
Table 4-2 RSP Status Register ...85
Table 4-3 RSP Status Write Bits ..86
Table 4-4 RDP Status Register...90
Table 4-5 RSP Status Write Bits (CPU VIEW) ...91
Table 4-6 RSP Coprocessor 0 Registers (CPU VIEW)..94
Table 4-7 Other RSP Addresses (CPU VIEW)..95
Table 5-1 Expression Operators ..110
Table 5-2 Expression Operator Precedence ..111
Table A-1 RSP Instruction Operation Notations ..153
13

14

Revision 1.0
Chapter 1

1. Introduction

The RSP (Reality Signal Processor) is a powerful processor which is part of
the RCP (Reality Co-Processor), the heart of the Nintendo Ultra64.

The RSP operates in parallel with the host CPU (MIPS R4300i) and dedicated
graphics hardware on the RCP. Software running on the RSP (microcode)
implements the graphics geometry pipeline (transformations, clipping,
lighting, etc.) and audio processing (wavetable synthesis, sampled sound,
etc.).

The RSP acts as a slave processor to the host CPU, and as such, programming
the RSP requires a conspiracy of RSP microcode, R4300 interfaces, and
mastery of the features of the RCP. This document addresses the first two of
these necessary skills; details of the RDP (Reality Display Processor)
component of the RCP can be found elsewhere.
15

Introduction
Document Description

What It Is

The goal of this document is to enable RSP microcode software
development:

• Explain architectural details of the RSP.

• Explain relevant architectural details of other parts of the RCP.

• Describe the RSP from a microcode programmer’s point-of-view.

• Describe the RSP (and interfaces) from the host CPU’s
point-of-view.

• Explain the RSP microcode assembly language.

• Explain the RSP software development environment.

What It Is Not

In order to present material at a sufficient level of detail without clutter,
allowing the programmer to “see the forest and the trees”, so to speak, we
have adopted several specific non-goals of this document:

• Basic assembly language programming concepts are not discussed.
The reader is assumed to have a thorough technical background.

• Basic concepts of vector processing architectures are not discussed,
however some specific issues relating to the RSP are discussed
briefly. A good reference for computer architecture which
discusses RISC processors and SIMD (vector) architectures is
“Computer Organization and Design, The Hardware/Software
Interface”1, by Patterson and Hennessy.

• Details of the MIPS Microprocessor Instruction Set Architecture
(ISA) are not presented. The design of the RSP instruction set

1 Patterson, D., Hennessy, J., “Computer Organization and Design, The Hardware/Software Interface”, Morgan
Kaufmann Publishers, 1994, ISBN 1-55860-281-X.
16

Revision 1.0 Document Description
borrows much from the R4000 ISA; the reader is referred to the
“MIPS R4000 Microprocessor User’s Manual”1 for more
information.

• Application-specific information is not presented. “How to Write
Graphics Microcode for the RSP” or “How to Write Audio
Microcode for the RSP” are topics worthy of a book themselves,
and are not discussed here.

• How to use the programming tools. There are detailed man pages
for each tool used during RSP software development. Although all
of these tools are mentioned in this document (and explained
briefly), the reader is referred to documentation for individual tools
for more information.

• Certain examples and advanced topics refer to higher-level Ultra64
features or RCP operations (operating system, graphics, audio,
etc.). These things are explained in other documents; a thorough
background knowledge of the Ultra64 is assumed in this document.

Information Presentation

Mastery of the information presented in this document will occur slowly, as
the information is both voluminous and of tremendous breadth. Some
concepts, such as the hardware architecture of the RSP and the microcode
assembly language, are of course thoroughly intertwined; discussion of one
is impossible without the other.

In order to present this material clearly, we have divided it up into the
following chapters. Each chapter presents its specific topic in detail, usually
assuming information contained in other chapters as background. We have
attempted to present the information in a logical, top-down fashion, with
liberal cross-references to assist the reader.

• Chapter 1, “Introduction,” is this chapter. It describes the
document itself, and briefly illuminates the RSP development
environment.

1 Heinrich, J., “MIPS R4000 Microprocessor User’s Manual”, Prentice Hall Publishing, 1993, ISBN 0-13-1-5925-4.
17

Introduction
• Chapter 2, “RSP Architecture,” describes the architecture of the
RSP in great detail.

• Chapter 3, “Vector Unit Instructions,” explains the vector unit (VU)
instructions, building on the RSP architecture and leading into RSP
programming.

• Chapter 4, “RSP Coprocessor 0,” describes the RSP’s Coprocessor 0.
The RSP Coprocessor 0 controls DMA activity, RDP
synchronization, and host CPU interaction.

• Chapter 5, “RSP Assembly Language,” details the assembly
language of the RSP, including assembler directives and some
programming conventions.

• Chapter 6, “Advanced Information,” builds on information in the
previous chapters in order to address sophisticated issues
including RSP performance, microcode overlays, host CPU
interactions, and additional programming conventions.

• Appendix A, “RSP Instruction Set Details,” contains a concise
description of each RSP instruction, intended to be used as a
reference.
18

Revision 1.0 RSP Software Development Tools
RSP Software Development Tools

A brief introduction to the RSP programming environment will provide a
framework for future discussions.

The following software tools are typically used for developing RSP code.
This section only mentions the critical, RSP-specific tools; other, more
general tools (like make and other UNIX tools) are not discussed.

rspasm

The assembler used to compile RSP microcode is rspasm. It is a simple,
2-pass assembler developed specifically for the RSP.

It interprets a simple assembly language, which is very R4000-like, but is not
MIPS compatible. The source language and assembler directives are unique
to the RSP.

The language, explained in more detail in Chapter 5, “RSP Assembly
Language,” has the following major features:

• Mnemonic opcode syntax for all SU and VU instructions.

• Support for labels in the text section (for branching) and the data
section (for referencing DMEM).

• Simple expression parsing.

The language also includes a rich set of assembler directives, used to instruct
the assembler during compilation:

• Data directives, used to initialize DMEM.

• Symbol naming directives, used to assign meaningful names to
registers, labels, constants, etc.

• Diagnostic directives, used to enforce memory alignment, print
diagnostic messages, etc.

rspasm does not build standard ELF object files, which are required by the
makerom utility in order to include RSP microcode objects into a game. ELF
file creation is decoupled from the assembler and accomplished by the
rsp2elf tool.
19

Introduction
The rspasm assembler outputs several special files. The root filename for
these files can be specified with the -o flag.

• <rootname>, is the binary executable code (text section). This file
can be loaded into the RSP simulator instruction memory (IMEM)
and executed.

• <rootname>.dat, is the binary data section. This is usually
loaded into RSP data memory (DMEM).

• <rootname>.lst, is a text program listing generated by the
assembler.

• <rootname>.sym, is a “symbol file” used by the RSP simulator to
perform source level debugging.

• <rootname>.dbg, is a “symbol file” used by the rsp2elf utility
in order to build an ELF object that can be used with makerom and
the gvd debugger.

The RSP assembler has no provisions for linking separately-compiled
objects. Since IMEM only holds 1024 instructions and assembling is so fast,
the lack of a sophisticated linker is not a problem. Source code can be broken
up into separate files and #include’d to enforce modularity.

Facilities to support dynamic linking, such as code overlays, are provided by
the buildtask tool.

cpp

By default, rspasm invokes the C preprocessor (/usr/bin/cc -E,
actually) before assembly so that source code can use #define,
#include, #ifdef, etc.

Like other MIPS assemblers, rspasm defines _LANGUAGE_ASSEMBLY
(useful for sharing header files with C programs).
20

Revision 1.0 RSP Software Development Tools
m4

The m4 macro processor is a useful tool that can optionally be invoked by the
assembler (rspasm -m). If requested, m4 will process the source code after
cpp, but before assembly.

Although this is a powerful feature, it is not used to build the currently
released software.

buildtask

This tool is a simple ‘linker’ which facilitates dynamic code overlays. its use
is not required.

buildtask uses a conspiracy between RSP microcode, DMEM usage, and
RSP task invocation to assist with code overlays. It concatenates code (and
data) objects (enforcing alignment) in the order provided on the command
line, and updates a table in DMEM with offsets and code sizes. This allows
the microcode to find a piece of code and overlay it into IMEM during
execution.

Additional details and examples of code overlays are described in
Chapter 6, “Advanced Information.”

rsp2elf

Since ELF files are required by makerom and gvd, this tool is necessary to
construct final microcode objects out of the rspasm output. It creates a
dummy ELF .o and inserts the code and data sections into the appropriate
locations. It also synthesizes some program symbols from the file name, so
that the application code can reference the RSP text and data sections. From
this .o, makerom can link the RSP microcode object into the game.

rsp, rspg

This tool is a software simulation of the RSP with a debugger-like interface.
21

Introduction
Originally developed to verify hardware design and enable parallel
hardware and software development, it remains useful for developing RSP
microcode in a stand-alone fashion.

It has two interfaces, a simple text window interface (rsp) and a fancy
window interface (rspg). The window interface supports source-level
debugging, which is extremely useful.

Gameshop Debugger (gvd)

The Gameshop debugger, gvd, can be used to debug RSP microcode
running on the real hardware.

Detailed instructions are beyond the scope of this document, but if you open
the “Coprocessor View” on gvd and set the program counter appropriately
you will be looking at IMEM. From here you can trace execution and
examine memory and registers.
22

Revision 1.0
Chapter 2

2. RSP Architecture

This chapter explains the significant architectural details of the Reality
Signal Processor (RSP). It is not intended to be a comprehensive hardware
specification, but it does describe the hardware features in sufficient detail
for software development.

Standing alone, the RSP is an extremely powerful processor; a fixed-point
RISC CPU capable of over half a billion arithmetic operations per second!1
As part of the RCP, the RSP is an integral part of the graphics/audio/video
processing pipelines.

Recommended background for this chapter includes a solid foundation in
computer architecture, including RISC processors and SIMD (Single
Instruction, Multiple Data) machines.

1 This is not a misprint. At 62.5Mhz with an 8-element vector pipeline, the RSP could perform 500,000,000
multiply-accumulate operations per second. Since the RSP dual-issues scalar instructions, you could also do
another 62,500,000 scalar operations during that same second. That is more than three times the performance
of the Cray supercomputers from twenty years ago.
23

RSP Architecture
Overview

Slave to the CPU

The RSP operates as a slave to the CPU. As such, there are limited error
recovery facilities and many features are explicitly managed at a low level
(booting, IMEM, DMEM, etc.)

Part of the RCP

Figure 2-1, reproduced from the Nintendo 64 Programming Manual,
illustrates the major functional blocks of the RCP.

The RSP, along with the RDP and the IO subsystem, comprise the RCP chip.
The RSP and RDP operate independently and are connected with the XBUS.

The IO block of the RCP also includes memory interfaces and separate DMA
engines for the RSP and RDP.
24

Revision 1.0 Overview
Figure 2-1 Block Diagram of the RCP

R4000 Core

The RSP implements an R4000 core instruction set, with additional
extensions.

The core instruction unit (without the extensions) is referred to as the Scalar
Unit (SU).

RSP

SU VU

IMEM

DMEM

IO

RDP

CPU VI AI PI SI

R4300 Audio Game Contollers
 Video Cartridge

RDRAM (Rambus Memory)

RCP

S
T
A
T
E

RS

TX

CC

BL MEM

TMEM
TF

CP0
25

RSP Architecture
Clock Speed

The RSP clock runs at 62.5 Mhz. Normally, the CPU and the RCP clock rates
run in a 3:2 ratio.

Vector Processor

The RSP has a vector processor, implemented as MIPS Coprocessor 2. The
vector unit (VU) has 32 128-bit wide vector registers (which can also be
accessed as 8 vector slices), a vector accumulator (which also has 8 vector
slices), and several special-purpose vector control registers.

The VU instruction set includes all useful computational instructions (add,
multiply, logical, reciprocal, etc.) plus additional “multimedia instructions”
which are well suited for graphics and audio processing. These instructions
are thoroughly explained in Chapter 3, “Vector Unit Instructions”.
26

Revision 1.0 Major R4000 Differences
Major R4000 Differences

The MIPS R4000 series processors provide a convenient framework for
learning about the RSP.

Pipeline Depth

Pipeline depth varies among MIPS processors and their implementations.
The RSP has a pipeline depth of 5.

No Interrupts, Exceptions, or Traps

The RSP operates as a slave processor. There is no support for interrupts,
exceptions, or traps.

Coprocessors

The RSP implements the following MIPS Coprocessors:

• Coprocessor 0 (system control). The RSP coprocessor 0 is not
compatible with the R4000 coprocessor 0. The RSP coprocessor 0 is
explained in Chapter 4, “RSP Coprocessor 0”.

• Coprocessor 2 (VU) implements the vector unit.

Other MIPS coprocessors, including coprocessor 1 (floating point processor)
are not implemented.

Missing Instructions

The following R4000 instructions are not present in the RSP instruction set:

• LDL, LDR, LWL, LWR, LWU, SWL, SDL, SDR, SWR, LL, LLD,
LDC1, LDC2, LD, SDC1, SDC2, SD, (all 64-bit loads/stores, load
locked, and load/store left/right)

• SC, SCD, (store conditionals)
27

RSP Architecture
• BEQL, BNEL, BLEZL, BGTZL, BLTZL, BGEZL, BLTZALL,
BGTZALL, BGEZALL, (all “likely” branches)

• MFHI, MTHI, MFLO, MTLO, (all HI/LO register moves)

• DADDI, DADDIU, DSLLV, DSRLV, DSRAV, DMULT, DMULTU,
DDIV, DDIVU, DADD, DADDU, DSUB, DSUBU, DSLL, DSRL,
DSRA, DSLL32, DSRL32, DSRA32, (all 64-bit instructions)

• MULT, MULTU, DIV, DIVU, (all multiply/divide instructions)

• SYSCALL, (RSP does not generate exceptions)

• SYNC, (this instruction is intended for multiprocessor systems)

• BCzF, BCzT (all branch-on-coprocessor instructions)

• TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU, TLTI, TLTIU,
TEQI, TNEI, (all TRAP instructions)

Modified Instructions

Some RSP instructions do not behave precisely like their R4000 counterparts.
Some major differences:

• ADD/ADDU, ADDI/ADDIU, SLTI/SLTIU, SUB/SUBU. Each pair of
these is synonymous with each other, since the RSP does not signal
overflow exceptions.

• BREAK does not generate a trap; instead condition bits in the RSP
status register are set and an interrupt is signaled.

Detailed behavior of all instructions is presented in Appendix A , “RSP
Instruction Set Details”.
28

Revision 1.0 IMEM
IMEM

The RSP has 4K bytes (1K instructions) of instruction memory (IMEM).

Addressing

The RSP PC is only 12-bits; only the lowest 12-bits of any address or branch
target are used. Other address bits are ignored.

Explicitly Managed

IMEM must be explicitly managed by the RSP program. IMEM contents can
only be loaded with a DMA operation (or programmed IO write from the
CPU).
29

RSP Architecture
DMEM

The RSP has 4K bytes of data memory (DMEM).

Addressing

Since DMEM is 4K bytes, only the lowest 12-bits of addresses are used to
address DMEM. Other address bits are ignored.

Explicitly Managed Resource

DMEM must be managed by the RSP program. All RSP loads/stores can
only access DMEM; data must first be transferred between DMEM and
external DRAM using a DMA operation (or programmed IO write from the
CPU).
30

Revision 1.0 External Memory Map
External Memory Map

The RSP memory and control registers map into the host CPU address space
as defined in the file rcp.h.

This memory map is used by the CPU program to manage the RSP.

It is also convenient to use this address map with the RSP assembler
(rspasm) and RSP simulator (rsp). Since only the lower 12-bits of addresses
and branch targets are used, the upper bits are safely ignored.

Chapter 4, “RSP Coprocessor 0”, details this address space; in particular,
Table 4-6, “RSP Coprocessor 0 Registers (CPU VIEW),” on page 94 and
Table 4-7, “Other RSP Addresses (CPU VIEW),” on page 95.

General-purpose SU and VU registers cannot be addressed externally.
31

RSP Architecture
Scalar Unit Registers

The RSP Scalar Unit has 32 general-purpose registers, each 32 bits wide.

SU Register Format

The RSP has big-endian byte ordering.

Figure 2-2 SU Register Format

Register 0

Register 0 ($0) is a special register. It always contains a zero, and cannot be
modified. Attempting to modify $0 is a null operation.

Since DMEM addresses are only 12-bits, it can be convenient to use $0 as the
base register for loads/stores (the entire DMEM address will fit in the 16-bit
offset field).

Register 31

Register 31 ($31) is a special register. The jal and jalr instructions store
their return address in this register.

If these instructions are avoided, this register can be treated as any other SU
register.

31 0

byte 0 byte 1 byte 2 byte 3
32

Revision 1.0 Scalar Unit Registers
SU Control Registers

RSP control registers are part of Coprocessor 0, and are explained in
Chapter 4, “RSP Coprocessor 0,” particularly Table 4-2, “RSP Status
Register,” on page 85.
33

RSP Architecture
Vector Unit Registers

The RSP Vector Unit has 32 general-purpose vector registers, each 128 bits
wide.

Depending on the operation, vector registers can be accessed as a single unit,
by bytes, or by 16-bit elements corresponding to a vector slice.

VU Register Format

The RSP has big-endian byte ordering.

Figure 2-3 VU Register Format

Bits within a byte or register element are numbered similarly, little-endian.

VU Register Addressing

VU registers can be accessed in a variety of formats, depending on the
instruction being executed.

Computational Instructions

Most computational instructions operate on VU registers as vectors,
performing the same operation on 8 16-bit vector elements, on an
element-by-element basis, with the 8 elements corresponding to the vector
slices.

127 0

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15

element 0 element 1 element 2 element 3 element 4 element 5 element 6 element 7
34

Revision 1.0 Vector Unit Registers
Instructions can operate on pairs of elements, adding two vectors (8 pairs of
numbers), for example.

VU registers can also be addressed as scalars, allowing you to add 1 number
(the same number) to a vector (8 numbers), for example.

Further, registers can be broken into scalar halves and scalar quarters,
allowing you to treat pieces of VU as subsets, performing the same
operations on consecutive ranges of elements. This is best understood with
an illustrated example, see Figure 3-8, “Scalar Half and Scalar Quarter
Vector Register Elements,” on page 59.

RSP assembly language syntax for vector registers is explained in the section
“Vector Register Element Syntax” in Chapter 5.

Loads, Stores, and Moves

VU loads, stores, and moves always reference data within VU registers by
their bytes. So if you want to load a short (2 bytes) into element 3 of a VU
register, you must do this:

lsv $v1[6], 0($1)

Element 3 corresponds to byte 6, of the VU registers.

Caution: A very common programming error is to confuse the “byte
index” of a VU load/store with the “element index” of a computational
instruction.
35

RSP Architecture
Accumulator

Each vector slice has a 48-bit accumulator associated with it. Each 16-bit
element of a vector register maps to a vector slice, and therefore to a different
48-bit accumulator.

Figure 2-4 VU Accumulator Format

The accumulator is modified by most VU computational instructions, but it
is used most heavily by the multiply-accumulate instructions. For these
instructions, 16-bits of the accumulator is written out after accumulation.
“Which” 16-bits to be written is usually an accumulator element. Consult
“VU Multiply Instructions” in Chapter 3 for more information.

One VU instruction, vsar, can directly reference the accumulator directly.

VU Control Registers

Vector Compare Code Register (VCC)

This 16-bit register contains 2 bits per 16-bit slice of the VU and is used by
the select instructions.

47 0

byte 2 byte 3 byte 4 byte 5byte 0 byte 1

high lowmiddle
36

Revision 1.0 Vector Unit Registers
The low 8 bits are used for most compares (vlt, veq, vne, vge) and
merge (vmrg), and all 16 bits are used for the clip compares (vcl, vch,
vcr).

Figure 2-5 VCC Register Format

Vector Carry Out Register (VCO)

This 16-bit register contains 2 bits per 16-bit slice of the VU and is used by
some of the add and select instructions to perform double-precision
operations.

The low 8 bits are CARRY, and are set by vaddc or vsubc instructions that
generate a carry out (or borrow, in the case of vsubc). The upper 8 bits are
NOT EQUAL, set by vaddc or vsubc if the operands are not equal.

vadd, vsub, and select compare instructions (vlt, veq, vne, vge) use
VCO as inputs and clear VCO. Select compare instructions use VCO which
was previously set by a vsubc instruction.

Figure 2-6 VCO Register Format

0

elem
7

elem
6

elem
5

elem
4

elem
3

elem
2

elem
1

elem
0

elem
7

elem
6

elem
5

elem
4

elem
3

elem
2

elem
1

elem
0

123456789101112131415

vs <= -vt (for clip compares)
select compare is TRUE

(vs >= vt, for clip compares)

0

elem
7

elem
6

elem
5

elem
4

elem
3

elem
2

elem
1

elem
0

elem
7

elem
6

elem
5

elem
4

elem
3

elem
2

elem
1

elem
0

123456789101112131415

NOT EQUAL is TRUE CARRY is TRUE
37

RSP Architecture
Vector Compare Extension Register (VCE)

This 8-bit register contains one bit for each VU slice, set to 1 if the vch
comparison was -1, 0 otherwise. Expressed in a high-level language:

if ((vs[elem] < 0 && vt[elem] >= 0) ||
(vs[elem] >= 0 && vt[elem] < 0) {
if (vs[elem] + vt[elem] == -1)

VCE[elem] = 1;
else

VCE[elem] = 0;
} else {

VCE[elem] = 0;
}

This is used for double-precision clip compares by vcl (in addition to VCC
and VCO); vcl clears VCE.

Figure 2-7 VCE Register Format

0

elem
7

elem
6

elem
5

elem
4

elem
3

elem
2

elem
1

elem
0

1234567

compare is -1
38

Revision 1.0 SU and VU Interaction
SU and VU Interaction

The RSP can execute two instructions per clock cycle, one scalar instruction
and one vector instruction. The scalar unit and vector unit operate in
parallel.

Dual Issue of Instructions

The instruction fetch cycle can fetch at most two instructions, one SU and
one VU. If there are no register conflicts, both instructions can be issued in
parallel.

Instructions are paired in order, they are not re-ordered to facilitate dual
issue. They do not need to be aligned as one SU and one VU in a 64-bit word.

If the pipeline stalls due to register conflicts (see “Register Hazards” on
page 43), no instructions are issued.
39

RSP Architecture
RSP Instruction Set

The details of the instruction set can be found in Appendix A, however
several important properties are worth mentioning here.

Instruction Formats

All RSP instructions are implemented within the MIPS R4000 Instruction Set
Architecture.

SU Instruction Format

The SU instructions include all three formats found in the MIPS ISA:
immediate (I-type), jump (J-type), and register (R-type). Consult the MIPS
R4000 Microprocessor User’s Manual for more information.

VU Instruction Format

VU instructions are implemented as coprocessor instructions, as defined by
the MIPS ISA.

Detailed discussion of VU instructions can be found in Chapter 3.

Distinguishing SU and VU Instructions

If the opcode mnemonic starts with a ‘v’, it is a vector unit instruction.

It is important to re-iterate that VU loads, stores, and moves are SU
instructions; they are executed in the scalar unit (possibly in parallel with
other VU instructions).

Illegal Instructions

If an illegal instruction is issued (incorrectly aligned load, incorrect VU
element usage, etc.) execution will still occur. Something will happen,
possibly modifying RSP state or the instruction flow, possibly not in the
expected way.
40

Revision 1.0 Execution Pipeline
Execution Pipeline

RSP Block Diagram

The RSP execution pipeline is illustrated in Figure 2-8.

The scalar unit of the RSP has a five stage pipeline:

IF Instruction Fetch. During this stage, two instruction are
fetched and decoded, dual-issuing, if possible.

RD Register Access and Instruction Decode. Control is set
up for functional units based on instruction decode.

EX Execute. For computational operations, the result is
calculated; for loads/stores/branches, the address is
calculated.

DF Data Fetch. For loads, the data is fetched; store data is
stored.

WB Write Back. Results are written back to registers.

The vector unit also has a five stage pipeline:

IF Instruction Fetch. Nothing happens in the VU during
this stage.

RD Register Access and Instruction Decode. Muxing for
“scalar mode”.

MUL Multiply. During this stage, computational operations
are computed. Reciprocal operations begin
table-lookup.

ACC Accumulate. Additional computation is performed.
Reciprocal operations perform table-lookup.

WB Write Back. Minor computations and writing of data to
vector registers.
41

RSP Architecture
Figure 2-8 RSP Block Diagram

(s
ig

ne
d/

un
s/

m
ix

)

sc
al

ar
 V

T

A
cc

um
ul

at
e

32
bx

32
 r

eg
is

te
r

fi
le

2R
1W

S
U

 P
ip

el
in

e
32

bi
ts

48
b

+
/-

/z
-d

et
ec

t

32
x1

6b
 r

eg
is

te
r

fi
le

16
*1

6-
>

32
b

m
ul

3R
2W

V
U

 P
ip

el
in

e
16

 b
it

 S
li

ce
, r

ep
lic

at
ed

 8
 ti

m
es

D
M

em
4K

B
yt

e
12

8b
x2

56

S
hi

ft
er

lo
ad

_d
at

a

IM
em

4K
B

yt
e

64
bx

51
2

A
dd

r

P
C

in
st

st
or

e_
da

ta +
/-

+
8

pc

ne
xt

_p
c

re
se

t_
pc

br
an

ch
_p

c

<
47

:0
>

V
ar

io
us

R
ou

nd
in

g

V
C

O

16
16

C
om

pl
em

en
t?

S
hi

ft

P
ri

 E
nc

R
O

M

C
om

pl
em

en
t?

16

Sh
if

t R
ig

ht

R
ec

ip
ro

ca
l

cl
am

p
va

lu
es

0’
s

0’
s

1’
s

=
=

D
at

aI
n

D
at

aO
ut

va
lu

es

N
O

P

V
ar

io
us

 s
hi

ft
s

L
og

ic
al

O
ps

St
or

e

L
oa

d

M
ux

es

M
ux

es

E
X

D
F

R
D

W
BIF

IF R
D

A
C

C

W
B

M
U

L

V
ar

io
us

bi

t r
an

ge
s

+
/-
42

Revision 1.0 Execution Pipeline
Mary Jo’s Rules1

Avoiding pipeline stalls in software can be accomplished by understanding
the following rules.

1. VU register destination writes 4 cycles later (need 3 cycles between
load and use). This applies to vector computational instructions,
vector loads, and coprocessor 2 moves (mtc2).

2. SU register load takes 3 cycles (need 2 cycles between load and
use). This applies to SU loads and coprocessor moves (mfc0,
cfc2, mfc2). SU computational results are available in the next
cycle (see “SU is Bypassed” on page 44).

3. Any load followed by any store 2 cycles later, causes a one cycle
bubble. Coprocessor moves (mtc0, mfc0, mtc2, mfc2,
ctc2, cfc2) count as both loads and stores.

4. A branch target not 64-bit aligned always single issues.

5. Branches:

a. Can dual issue (with preceding instruction).

b. No branch instruction permitted in a delay slot.

c. Delay slot always single issues.

d. Taken branch causes a 1 cycle bubble.

Register Hazards

The RSP hardware implements register hazard locking for SU and VU
registers. Once an instruction is fetched and decoded, its destination register
is marked as a “hazard”; if this register is used as an input to a subsequent
instruction, the pipeline will stall.

1 Named after Mary Jo Doherty, the designer of the RSP.
43

RSP Architecture
Obviously, pipeline stalls should be avoided by the programmer (when
possible) for the best performance.

Because the SU is bypassed (see below), this section only applies to SU
registers for loads (and coprocessor moves) and VU registers.

SU is Bypassed

Bypassing, or forwarding, is a technique commonly used to accelerate RISC
execution pipelines.

Instead of waiting for the result of a previous instruction to be written to its
destination register, a subsequent instruction can use the (correct) value
which is residing in a temporary register in the arithmetic and logical unit.

Figure 2-9 Pipeline Bypassing

For software, this means that results from SU instructions are available in the
next clock cycle, removing the concern of preventing pipeline stalls.1

1 An obvious question is “why isn’t the VU bypassed?” As illustrated in Figure 2-8, the final result of a vector
computation is not available until very late in the WB stage of the pipeline.

IF RD EX DF WBadd $4, $4, $5

IF RD EX DF WBadd $3, $4, $6

IF RD EX DF WBadd $7, $3, $8

IF RD EX DF WBsw $7, 0($10)
44

Revision 1.0 Coprocessor 0
 Coprocessor 0

The RSP coprocessor 0 is thoroughly discussed in Chapter 4, but is
mentioned here for completeness.

Coprocessor 0 in the MIPS R4000 architecture is designated as the “system
control coprocessor”. Since the RSP is a slave processor, the system control
functions are greatly reduced, and therefore the usage of coprocessor 0 does
not conform to the MIPS R4000 architecture specification.

The RSP does use coprocessor 0 for “system control” functions, these
functions (and their registers) are explained in Chapter 4.
45

RSP Architecture
Interrupts, Exceptions, and Processor Status

Interrupts

The RSP does not respond to interrupts, and it can only generate a single
interrupt (MI_INTR_SP), triggered by the break instruction.

Exceptions

No RSP instruction can cause an exception, and there are no exception
handling facilities in the RSP.

Processor Status

The RSP has a processor status register in coprocessor 0, this register can be
used to communicate with the CPU. See page 85 for more information.
46

Revision 1.0
Chapter 3

3. Vector Unit Instructions

Details about each specific instruction are contained in Appendix A, but it is
useful to discuss issues common to all of the vector unit instructions, as well
as to discuss each related group of vector unit instructions in context.

There are two categories of vector unit instructions discussed in this chapter:

• Vector Loads/Stores/Moves. These are actually scalar unit
instructions (executed in the SU, possibly in parallel with VU
computational instructions) which load/store/modify vector unit
general purpose or control registers.

• Vector Computational Instructions. These instructions are executed
in the vector unit in parallel with any scalar instructions.

All of these instructions are implemented with the MIPS coprocessor
extensions to the MIPS R4000 Instruction Set Architecture, which permit
coprocessor-specific interpretation of some instruction bits. It is these
“coprocessor-specific” details which are the subject of this chapter.
47

Vector Unit Instructions
VU Loads and Stores

Vector loads and stores are scalar unit (SU) instructions used to move the
contents of DMEM to and from VU registers (see “VU Register Format” on
page 34). VU loads and stores can only access DMEM; they cannot access
DRAM. Data must be transferred into DMEM using a DMA operation before
use.

VU Load and Store instructions follow the general format of MIPS
Coprocessor loads and stores (LWC2, SWC2), except for a different
interpretation of the 16 offset bits. This usage of the 16 bit offset field in MIPS
coprocessor opcode space extends the number of memory operations,
without using up a lot of instruction space.

Figure 3-1 VU Load and Store Instruction Format

The operands are:

Base is an SU register containing a DMEM memory address. Only the
lower 12 bits of this register are used, other bits are ignored.

VT is the VU register to or from which memory data is written.

The opcode is the memory item type and operation being performed.

Element is the byte element of the VU register being accessed.

Offset is a 7 bit constant shifted by the memory item size and added to
the memory address in base. This means that the offset supplied in the
assembly language must be an operand-size-aligned integral; a
multiple of 2 bytes for a short load, 4 bytes for a long, etc. Since the
offset is added to the base, the effective address can still be
byte-aligned, however.

All VU loads are delayed load instructions, with three load delay slots
(results from a VU load are available for use in the fourth instruction
following the load). If a VU instruction attempts to use the destination

016212631

vtbaseLWC2 or SWC2 elementopcode

11 7

offset

25 20 15 10 6
48

Revision 1.0 VU Loads and Stores
register of a VU load, hardware interlocking will stall the processor until the
data arrives.

Note: VU stores use an identical pipeline; since accesses to memory
always occur in the same VU pipeline stage, a VU store followed by an
immediate load from the same memory location is guaranteed to fetch
the correct data.

VU stores followed by SU loads are also guaranteed to fetch the correct
data, for similar reasons.

VU loads and stores are of three types, normal, packed, and transpose.
Normal operations allow the movement of the usual integer memory data
items of powers of two numbers of bytes between memory and VU registers
with memory byte alignment, and VU element alignment to the size of the
item.

The packed operations support access to memory byte data and two and
four byte per pixel image data (such as YUV or RGBA).

Transpose accesses are discussed in a subsequent section, and include a
transposed or wrapped store, and a transposed and wrapped load.

Table 3-1 VU Load/Store Instruction Summary

Opcode Memory Item
Memory

Alignment
VU Element

(legal values)
Offset Shift

Amount

lbv, sbv 8b (byte) byte 0-15 << 0

lsv, ssv 16b (short) byte 0-14 by 2 << 1

llv, slv 32b (long) byte 0-12 by 4 << 2

ldv, sdv 64b (double) byte 0, 8 << 3

lqv, sqv 128b (quad) byte (see below) 0 << 4

lrv, srv 128b (rest) byte (see below) 0 << 4

lpv, spv 8 8b, signed (pack) byte (bit 15) 0 << 3

luv, suv 8 8b, unsigned (upack) byte (bit 14) 0 << 3

lhv, shv 8 8b every 2nd,
unsigned (half pack)

quad+0,1 0 << 4

N
or

m
al

P
ac

ke
d

49

Vector Unit Instructions
If an illegal alignment (or element value) is attempted, something will be
loaded or stored, but probably not what was intended.

Normal

Normal loads and stores move a single memory item to or from an element
of a VU register. Items are byte (8 bit), short (16 bit), long (32 bit), double (64
bit), and quad or rest (128 bit). The memory address is byte aligned. The VU
element is aligned to the size of the item.

Quad and rest operands update the portion of the memory item or VU
register which fall within the aligned quad word.

Quad operations move a byte-aligned quad word up to the 16 byte
boundary, that is, (address) to ((address & ~15) + 15) to/from VU register
element 0 to (address & 15).

Rest is used to move a byte-aligned quad word up to the byte address, that
is, (address & ~15) to (address - 1) to/from VU register element
(16 - (address & 15)) to 15. A rest with a byte address of zero writes no
bytes.

The quad and rest pair can then move a byte-aligned quad word to/from an
entire vector register in two instructions. (This can also be performed with
two byte-aligned double instructions, although quad and rest allow the two
quad words to be disjoint.) A quad word on a quad word boundary can be
moved in one quad instruction.

lfv, sfv 4 8b every 4th,
unssigned (fourth pack)

quad+0 to 3 0, 8 << 4

ltv, stv,
swv

8 16b (transpose, wrap) quad 0-14 by 2 << 4

Opcode Memory Item
Memory

Alignment
VU Element

(legal values)
Offset Shift

Amount

T
ra

ns
po

se
50

Revision 1.0 VU Loads and Stores
Figure 3-2 Long, Quad, and Rest Loads and Stores

VU register

Memory word

Element

Byte Address
128b alignment Item size

VU register

Memory word

Element

Byte Address
128b alignment Item size

Long item:

Quad item crossing memory word:

VU register

Memory word

Element

Byte Address
128b alignment Item size

Rest item crossing memory word:
51

Vector Unit Instructions
Packed

Packed loads and stores move memory bytes to or from short elements of the
VU register, which are aligned to shorts. They are useful for accessing one,
two, or four channel byte image data for VU processing as shorts, such as for
VU multiplies.

When only some bits of a slice receive data from memory the remaining bits
in the slice get zeros.

lpv/spv (pack) moves 8 consecutive bytes to or from a memory.

luv/suv (unsigned pack) is similar to lpv/spv, except the memory byte
MSB is aligned to bit 14 of the VU short for unsigned data.

lhv/shv (half) moves every other memory byte, and the selection of odd or
even bytes is controlled by the memory byte address.

lfv/sfv (fourth) moves every fourth memory byte, and the selection of
which bytes is controlled by the memory byte address. Since fourth only
access four bytes within a memory word, element specifies whether the low
or high four shorts of the VU register are accessed.

Packed loads and stores are illustrated in Figure 3-3.
52

Revision 1.0 VU Loads and Stores
Figure 3-3 Packed Loads and Stores

VU register

Memory word

Element

Byte Address

128b alignment

VU register

Memory word

Byte Address

128b alignment

VU register

Memory word

Byte Address
128b alignment

Pack, Unsigned Pack

Fourth

Half
53

Vector Unit Instructions
The alignment of various pack formats with VU short elements is shown in
the Figure 3-4

Figure 3-4 Packed Load and Store Alignment

Unsigned pack, half, and fourth items are intended to support unsigned
bytes for one, two, or four channel image data. Pack is a signed byte, for
example for 8 bit audio or geometric normal or difference vectors. The
alignment to the VU short MSB optimizes usage as signed or unsigned
fractions in subsequent VU multiplies.

Transpose

Transpose loads and stores can be used to transpose an 8 by 8 block of shorts
in 16 instructions.

The instructions are stv, swv, and ltv. Transpose loads and stores
move a 128 bit VU register to and from an aligned 128 bit memory word as
8 16 bit values, one from each VU slice. The VU register number of each slice
is computed as:

(VT & 0x18) | ((Slice + (Element >> 1)) & 0x7)

which is to say, vt specifies a base register of an 8 register group. Within that
group, the register address is a function of the slice number and the element
number treated as 0 to 7. A store gathers a diagonal vector of shorts from 8
VU registers into a memory word, or a load scatters a memory word into a
diagonal vector of shorts in 8 VU registers, without writing the other shorts
in each register. Wrap loads and stores perform a circular left shift of the 8
shorts by (element >> 1), which is equivalent to:

0

Memory byte item

VU short element

Pack Upack, Half, Fourth

00 141515 78
Zero Zero
54

Revision 1.0 VU Loads and Stores
dest_short[Slice] = source_short[((Slice +
(Element >> 1)) & 0x7)]

A transpose is shown in Figure 3-5, with 8x8 block of 8 shorts in 8 VU
registers numbered in row order for the 64 elements of the block. The other
14 vector loads and stores needed for the transpose are similar. For a
memory-to-memory transpose, the instructions used are ltv and swv, and
for a register-to-register transpose, stv and ltv.

Interlock is performed by enabling the source and destination register
comparisons on only the upper two register number bits, that is, making any
interlock comparison to the 8 registers within a transpose block true.

Figure 3-5 Transpose Loads and Stores

3

12

21

30

39

40

49

58

3 12 21 30 3940 49 58

3

12

21

30

39

40

49

58

Store Transpose, Element 5 Load Transpose, Element 3

128b memory word

VT

VT+7
55

Vector Unit Instructions
VU Register Moves

VU register move instructions follow the general format of MIPS
Coprocessor moves (MTC2, MFC2, CTC2, CFC2), with additional
interpretation of the lower 11 bits.

Figure 3-6 VU Coprocessor Moves

The low 16 bits of the SU register rt are moved from or to the 16 bit element
of the VU register vs specified in element. The SU register is sign extended
when moved from the VU register.

For general VU register moves, element is a byte element, which must be one
of [0,2,4,6,8,10,12,14].

For control register moves, the vs field specifies the VCO, VCC, or VCE
control registers, and element is ignored. See “VU Control Registers” on
page 36 for explanation of each control register.

Moves to VU registers have the same load delay characteristics as VU loads.
Moves to SU registers have the same load delay characteristics as SU loads.

0162131

rtCOP2 move opcode element

10

vs

6

undefined

20 15 11 7
56

Revision 1.0 VU Computational Instructions
VU Computational Instructions

The VU computational instructions adhere to the general format of MIPS
Coprocessor Operate instructions (COP2).

Figure 3-7 VU Computational Instruction Format

Most VU computational instructions are three operand:

VD = VS operation VT

 where each operand is one of 32 vector registers. The vt operand can also be
a scalar operand in some instructions, that is, one 16 bit element of the vector
register, as defined in the element field. The value written to vd is clamped
(saturated) to the minimum and maximum values of the element (-32768 and
+32767 for 16-bit signed elements), before being written.

A vector accumulator register (see “Accumulator” on page 36) is available to
accumulate results over several instructions. The accumulator is modified
by all multiply and some add instructions, but its contents are unchanged
after other VU instructions. The major types of VU computational
instructions are multiply, add, select, logical, and divide. The upper bits of
the opcode field select the instruction type, and are encoded as in Table 3-2.

Table 3-2 VU Computational Instruction Opcode Encoding

Opcode Instruction

0 0 x x x x Multiply

0 1 x x x x Add

1 0 0 x x x Select

1 0 1 x x x Logical

1 1 0 x x x Divide

061116212531

vt vs vd opcodeelementCOP2 1

26 24 20 15 10 5
57

Vector Unit Instructions
Using Scalar Elements of a Vector Register

Element encodings are shown in Table 3-3, where x indicates the bit field
used to select which element. Scalar elements can be selected within
quarters, halves, or the whole vector.

Table 3-3 VU Computational Instruction Element Encoding

This is useful for operating on multiple “vectors” within one instruction
cycle, such as working on two 3D points/vectors.

Consider the following code to compute the square of the distance between
two points:

#
dist^2 = (xa-xb)^2 + (ya-yb)^2 + (za-zb)^2
#
Assumes single precision, all in range, etc.
#
vsub $v3, $v1, $v2 # calc (xa-xb), (ya-yb), (za-zb)
vmudh $v3, $v3, $v3 # square the differences
vadd $v3, $v3, $v3[1q]# collect the terms
vadd $v3, $v3, $v3[2h]

In this example, scalar half and scalar quarter element references are used in
the vadd instructions to collect the intermediate terms. We can also compute
the distance between two groups of point-pairs at once, by putting each

Type
Assembly

Syntax Example
Element

Field
Usage

Vector $v1 0 0 0 0 vector operand

Scalar Quarter $v1[xq] 0 0 1 x 1 of 2 elements for 4 2-element quarters of vector

Scalar Half $v1[xh] 0 1 x x 1 of 4 elements for 2 4-element halves of vector

Scalar Whole $v1[x] 1 x x x 1 of 8 elements for whole vector
58

Revision 1.0 VU Computational Instructions
point-pair in the same half of the vector registers. The register contents and
operations are illustrated in Figure 3-8.

Figure 3-8 Scalar Half and Scalar Quarter Vector Register Elements

(xa-xb) (ya-yb) (za-zb) 0 (xa-xb) (ya-yb) (za-zb) 0$v3

x’+y’+z’ y’+y’+z’ z’+z’ z’ x’+y’+z’ y’+y’+z’ z’+z’ z’$v3

(xa-xb) (ya-yb) (za-zb) 0 (xa-xb) (ya-yb) (za-zb) 0$v3

x’ y’ z’ 0 x’ y’ z’ 0$v3

x’+y’ y’+y’ z’+0 0+0 x’+y’ y’+y’ z’+0 0+0$v3

vmudh $v3, $v3, $v3

vadd $v3, $v3, $v3[2h]

vadd $v3, $v3, $v3[1q]

* * * * * * * *

+ +

+ +

++

xa ya za 0 xa ya za 0$v1

xb yb zb 0 xb yb zb 0$v2

vsub $v3, $v1, $v2 - - - - - - - -
59

Vector Unit Instructions
In the above example (since add is commutative), a slightly different usage
of the vector registers could have been used to direct the final result to be in
a different element. Replacing:

vadd $v3, $v3, $v3[1q]

with

vadd $v3, $v3, $v3[0q]

would leave the final result in element [1h] instead of [0h]. This might be
important, in order to align the results for the next computation.
60

Revision 1.0 VU Multiply Instructions
VU Multiply Instructions

Figure 3-9 VU Multiply Opcode Encoding

VU multiply instructions perform various multiplies, specified by the
following fields:

Element: Vector or scalar element of vt.

A: When a == 1, Accumulate the product, otherwise round the product
and load the accumulator. The round value is determined by the
format.

Format: Select various product and result options.

The product is the 32 bit signed result from the 16x16 signed multiply. Each
element of the accumulator is 48 bits wide (see “Accumulator” on page 36).
The result is the 16 bits of the accumulator written to vd. Double precision
(32 bit) operands are supported by multiplying and accumulating the low 16
bits from one vector operand and the upper 16 bits from another vector
operand in several multiply instructions. Formats for various product and
result options are shown in Table 3-4.

Table 3-4 VU Multiply Instruction Summary

Fmt S, T signed
Prod
Shift

Round Value Result Clamping Instructions

0 0 0 sign, sign << 1 +32768 b31-16 sign, b31-msb vmulf, vmacf

0 0 1 sign, sign << 1 +32768 b31-16 uns, b31-msb vmulu, vmacu

0 1 0 NA, sign NA +VT if Acc b31-16 sign, b31-msb vrndp, vrndn

0 1 1 sign, sign << 16 +31 if Prod b32-17 sign, b32-msb vmulq, vmacq

1 0 0 uns, uns >> 16 0 b15-0 sign, b31-msb vmudl, vmadl

1 0 1 sign, uns 0 0 b31-16 sign, b31-msb vmudm, vmadm

format

0235

0 0 a

4

61

Vector Unit Instructions
vmulf and vmulu support operands with 15 fraction bits, and differ only in
whether the result is clamped signed or unsigned. Small integer operands
can be multiplied with vmudh (if the result is bigger than 16 bits, double
precision should be used.)

vmulq is intended specifically to support 12 bit MPEG inverse
quantization1. The product is shifted left by 16 in order to clamp on the
upper accumulator. The round value (31<<16) is added to the product if the
product is negative, otherwise zero is added. The result is clamped and
shifted right by 17 before being written to vd and AND’d with 0xFFF0,
producing a result from -2048 to 2047 aligned to the short MSB. In other
words,

VD = (ACC >> 17) & 0xFFF0

vmacq ignores the vs and vt operands, and performs oddification1 of the
accumulator by adding (32<<16) if the accumulator is negative and bit 21 is
zero, adding (-32<<16) if positive and bit 21 is zero, or adding zero if the
accumulator bits 47-21 is zero or bit 21 is one. The clamp and shift is the same
as vmulq.

vrnd is intended to specifically support MPEG DCT rounding1. The vt
operand is conditionally added to the accumulator. For vrndn, vt is added
if the accumulator is negative, otherwise zero is added. For vrndp, vt is
added if the accumulator is positive, otherwise zero is added. vt is shifted
left by 16 if the register number vs is 1, or not shifted if vs is zero (note this
is the instruction field vs, not the contents of vs).

1 1 0 uns, sign 0 0 b15-0 sign, b31-msb vmudn, vmadn

1 1 1 sign, sign << 16 0 b31-16 sign, b31-msb vmudh, vmadh

1 MPEG1 Specification, ISO/IEC 11172-2. MPEG documentation is available from the American National
Standards Institute (ANSI), New York, N.Y.; or from the Japanese Industrial Standards Committee (JISC),
Tokyo, Japan.

Fmt S, T signed
Prod
Shift

Round Value Result Clamping Instructions
62

Revision 1.0 VU Multiply Instructions
Rounding is performed for single precision multiplies by adding the
appropriate rounding value (as dictated by the format) to the accumulator.

Clamping (saturation) is performed by testing certain accumulator bits
above the 16 bit result field, and substituting maximum or minimum 16 bit
signed or unsigned numbers, as dictated by the format.

The operations vmul* and vmac* (or vmud* and vmad*) either load the
accumulator or add the product to the accumulator. Typically a vmac* or
vmad* must immediately follow a vmul* or vmud* instruction or else the
accumulator contents are undefined.

vmulf supports signed fractions. vmulu supports signed fractions with
clamping to an unsigned result, such as for pixel color values. For double
precision, vmudl performs the low partial product, vmudm and vmudn the
middle partial products, and vmudh the high partial product.

Ignoring clamping, the multiply instructions are equivalent to:

for (i=0; i<8; i++)
VD[i] = (ACC[i] = (VS[i] * VT[i] << 1) + Round) >> 16;

and the multiply accumulate instructions are equivalent to:

for (i=0; i<8; i++)
VD[i] = (ACC[i] += VS[i] * VT[i] << 1) >> 16;

or in either case, possibly times vt[element].

The double precision multiply instructions are equivalent to1:

 for (i=0; i<8; i++)
VD[i] = ((ACC[i] = (VS[i] * VT[i]) <<>> prod_shift) >>

result_shift);

and the double precision multiply accumulate instructions are equivalent to:

 for (i=0; i<8; i++)
VD[i] = ((ACC[i] += (VS[i] * VT[i]) <<>> prod_shift) >>

result_shift);

1 in the following examples, the notation ‘<<>>’ means “shifted up or down, whichever is appropriate”.
63

Vector Unit Instructions
Double precision operands use a register pair, one register containing the
upper signed 16 bits and another containing the low unsigned 16 bits.

Double precision multiplication is illustrated in Figure 3-10.

Figure 3-10 Double-precision VU Multiply

Since double precision returns at most a 32 bit result, software must keep
numbers in range.

Mixed precision, that is a 16x32 multiply, can be performed with different
combinations of multiply instructions.

In some instances, it is necessary to use an additional multiply instruction to
extract the rest of the answer from the accumulator. This is necessary
because one of the partial-product multiplies may change the sign of the
result, requiring you to retrieve a portion of the result from the accumulator
again.

High 16b signed int,

vmudl SL * TL >> 16

vmadm SH * TL >> 0

vmadn SL * TH >> 0

vmadh SH * TH << 16

H 16b int, L 16b fract

+

+

+

+

Accumulator

VS and VT operands

VD result

Low 16b unsigned frac
64

Revision 1.0 VU Multiply Instructions
Vector Multiply Examples

The following code fragments illustrate various multiplies. In this section,
the following notation is used:

• I is a signed 16-bit integer.

• F is an unsigned 16-bit fraction.

• IF is a 32-bit number, with the signed upper 16 bits contained in
one register, and the unsigned lower 16 bits contained in a second
register.

• _int is a named vector register holding a signed 16 bit number.

• _frac is a named vector register holding an unsigned 16 bit
fraction.

• dev_null is a named vector register containing all zeros.

IFxI:
 #
 # mixed precision multiply:
 # IF * I = IF
 #
vmudn res_frac, s_frac, t_int
vmadh res_int, s_int, t_int
vmadn res_frac, dev_null, dev_null[0]

IxIF:
 #
 # mixed precision multiply:
 # I * IF = IF
 #
vmudm res_frac, s_int, t_frac
vmadh res_int, s_int, t_int
vmadn res_frac, dev_null, dev_null[0]

IFxF:
 #
 # mixed precision multiply:
 # IF * F = IF
 #
vmudl res_frac, s_frac, t_frac
65

Vector Unit Instructions
vmadm res_int, s_int, t_frac
vmadn res_frac, dev_null, dev_null[0]

IxI:
 #
 # single precision integer multiply:
 # I * I = I
 #
vmudh res_int, s_int, t_int

IxF:
 #
 # single precision multiply:
 # I * F = IF
 #
vmudm res_int, s_int, t_frac
vmadn res_frac, dev_null, dev_null[0]

Other combinations are left as an exercise to the reader.
66

Revision 1.0 VU Add Instructions
VU Add Instructions

Figure 3-11 VU Add Opcode Encoding

The VU add instructions perform various types of adds, specified by the
following fields:

Element: Vector or scalar element of vt (except vsar where it selects the
accumulator portion).

Type: One of the following types of add instructions:

Table 3-5 VU Add Type Encoding

Type Instruction

0 0 0 0 vadd

0 0 0 1 vsub

0 0 1 0 reserved

0 0 1 1 vabs

0 1 0 0 vaddc

0 1 0 1 vsubc

0 1 1 0 reserved

0 1 1 1 reserved

1 0 0 0 reserved

1 0 0 1 reserved

1 0 1 0 reserved

1 0 1 1 reserved

1 1 0 0 reserved

035

0 1 type

4

67

Vector Unit Instructions
The VU adds are short (16 bit) add operations; they clear VCO and clamp to
16 bit signed values. vadd uses VCO as carry in, vsub uses VCO as borrow in,
and vabs ignores VCO:

vadd: VD = VS + VT

vsub: VD = VS - VT.

vabs: conditional negation of vt by the sign of vs. Also performs sign().

if (VS < 0)
VD = -VT;

else if (VS == 0)
VD = VS;

else
VD = VT;

Add operations for double precision, no clamping:

vaddc: VD = VS + VT, set VCO with carry out and not
equal.

vsubc: VD = VS - VT, set VCO with borrow out and not
equal.

vsar: read the accumulator and write to vd, and write the accumulator with
the contents of vs. vt is ignored. The high, middle, or low 16 bits of the
accumulator are selected by the element (corresponding to element values of
0, 1, and 2, respectively). No clamping is performed. vsar is useful for
diagnostics and extended precision.

Vector Add Examples

The following code fragments illustrate various adds. In this section, the
following notation is used:

1 1 0 1 vsar

1 1 1 0 reserved

1 1 1 1 reserved

Type Instruction
68

Revision 1.0 VU Add Instructions
• I is a signed 16-bit integer.

• F is an unsigned 16-bit fraction.

• IF is a 32-bit number, with the signed upper 16 bits contained in
one register, and the unsigned lower 16 bits contained in a second
register.

• _int is a named vector register holding a signed 16 bit number.

• _frac is a named vector register holding an unsigned 16 bit
fraction.

• dev_null is a named vector register containing all zeros.

This code demonstrates a double-precision add:

vaddc res_frac, s_frac, t_frac
vadd res_int, s_int, t_int

This code demonstrates a double-precision subtract:

vsubc res_frac, s_frac, t_frac
vsub res_int, s_int, t_int

This code demonstrates reading the accumulator using vsar, following a
multiply:

vmadh res_int, s_int, t_int
vsar res_int, s_int, t_int[0]
vsar res_frac, s_frac, t_frac[1]

Other combinations are left as an exercise to the reader.
69

Vector Unit Instructions
VU Select Instructions

The VU select operations compare pairs of vector elements and choose
which one to write, based on the outcome of the test.

Figure 3-12 VU Select Opcode Encoding

Instruction fields are:

Element: Vector or scalar element of vt.

Type: One of the following operations:

Table 3-6 VU Select Type Encoding

Select compares perform an element by element comparison of vs and vt,
using VCO as input, clearing VCO, setting VCC with the result of comparison,
and storing the element for which the comparison is true to vd.

vlt: VS < VT

veq: VS == VT

Type Instruction

0 0 0 vlt

0 0 1 veq

0 1 0 vne

0 1 1 vge

1 0 0 vcl

1 0 1 vch

1 1 0 vcr

1 1 1 vmrg

0235

1 0 0 type
70

Revision 1.0 VU Select Instructions
vne: VS!= VT

vge: VS >= VT

vch: Clip test, single precision or high half of double
precision.

vcl: Clip test, low half of double precision.

vcr: 1’s complement clamp.

vmrg: VD = VS or VT selected by VCC, VCO is ignored.

Note: To implement comparisons which are not supplied, the ‘vle’
compare can be performed by vge after swapping vs and vt operands;
similarly, ‘vgt’ by vlt. If vt is scalar, the value can be decremented
and then ‘vgt’ is performed by vge, and ‘vle’ by vlt.

Select merge instructions select elements of vs or vt based on the contents of
the VCC and write the element to vd. Merge is useful for selecting several
different operands from one comparison or after loading VCC with a bit field.

Double precision comparisons are supported in combination with the VCO
register set by vsubc.

The compare operations use the contents of VCO as input and clear VCO.
Usually VCO was previously set by a vsubc instruction, with a negative
(carry) or not equal status bit for each element of the vector, so double
precision (32 bit) compares can be accomplished.

The compares (ignoring VCO for the moment) are equivalent to

for (i=0; i<8; i++) {
if (VS[i] condition VT[i])

VCC |= (1<<i);
else

VCC &= ~(1<<i),
VD[i] = (VCC & (1 << i))? VS[i]: VT[i];

}

Compares other than vch/vcl/vcr clear the upper 8 bits of VCC.

The merge is equivalent to

for (i=0; i<8; i++)
VD[i] = (VCC & (1 << i))? VS[i]: VT[i];
71

Vector Unit Instructions
Note that vmrg uses the low 8 bits of VCC, the upper 8 as set by vcl/vcr are
ignored.

The results of a compare in VCC are available to a following vmrg instruction
using VCC without pipeline delays. VCC can also be accessed by the SU with
VU move instructions (ctc2/cfc2) for other processing such as
accumulation, branching, or patterning. VCC is only modified by compare or
VU move instructions.

The vch and vcl (Clip test) comparisons are an optimization for comparing
the elements of a vector vs to a scalar element in vt, or the vector vt, such as
comparing w to xyz, or clamping a vector to a +/- range. vch performs
(-VT >= VS >= VT) generating 16 bits in VCC and updating VCO and VCE
with equal and sign values. The vch is used for singled precision (16 bit)
operands. For double precision, vch is performed first on the upper 16 bits,
followed by a vcl instruction on the lower 16 bits. vcl reads and writes
VCO, VCC, and VCE. Because only one of the two comparisons per element
can be true, vch/vcl can be executed in one comparison per vector element.
The XOR of the sign of vs and vt is used to select the arithmetic operation
used for the comparison, such as

if ((VS[i] ^ VT[i]) < 0) {
VCC |= ((VT[i] >> 16) & 1) << i;
if (VS[i] <= -VT[i]) {

VCC |= 256<<i;
VD[i] = -VT[i];

} else
VD[i] = VS[i];

} else {
VCC |= ((VT[i] >> 8) & 256) << i;
if (VS[i] >= VT[i]) {

VCC |= 1<<i;
VD[i] = VT[i];

} else
VD[i] = VS[i];

}

For each element of vs, one of two bits meaning <= -VT or >= VT is set in
VCC, for example, bit 8 is one if the first element of vs is <= -VT, bit 0 is one
if the first element of vs is >= VT, bit 9 is set if the second element of vs is
<= -VT, etc. If the vch/vcl comparison is true, either -vt or vt is written to
vd based on the sign of vs, else vs is written.
72

Revision 1.0 VU Select Instructions
Note: For single precision vch not followed by a vcl, VCO must be set
before another compare (by a move, add, or compare whose results are
not meaningful).

The vcr instruction is similar to vcl, except that vt is a 1’s complement
instead of 2’s complement number, such as for clamping to a power of 2. vcr
is only single precision and ignores the contents of VCO for input.

Vector Select Examples

The following code fragments illustrate various vector selects.

This code demonstrates a sort of the parallel elements within three vectors
(finding the min, mid, and max of 8 triples). After executing this code, min
will contain the smallest elements, max will contain the largest, and mid will
contain the intermediate elements:

vge tmp1, min, mid
vlt min, min, mid
vge tmp2, min, max
vlt min, min, max
vge max, tmp1, tmp2
vlt mid, tmp1, tmp2

This code demonstrates the generation of 3D clip codes for trivial rejection,
testing each x,y,z component against w. It also uses vector halves,
clip-testing two vertices at the same time (the first vertex is in elements 0-3,
the second in elements 4-7):

vch vtmp, vout_int, vout_int[3h] # compare with w
vcl vtmp, vout_frac, vout_frac[3h]
cfc2 $1, $vcc # get clip codes

Other combinations are left as an exercise to the reader.
73

Vector Unit Instructions
VU Logical Instructions

The VU logical instructions perform the usual bit-wise logical operations on
vs and vt, writing the result to vd.

Figure 3-13 VU Logical Opcode Encoding

Instruction fields are:

Element: Vector or scalar element of vt.

Type: One of the following operations:

Table 3-7 VU Logical Type Encoding

Type Instruction

0 0 0 vand

0 0 1 vnand

0 1 0 vor

0 1 1 vnor

1 0 0 vxor

1 0 1 vnxor

0235

1 0 1 type
74

Revision 1.0 VU Divide Instructions
VU Divide Instructions

The VU divide instructions compute the reciprocal of a scalar element of a
vector register.

Figure 3-14 VU Divide Opcode Encoding

The divide instructions are two operand, vd and vt. An element specification
must be provided for each operand, selecting the source and destination
elements, for example:

vmov $v1[5], $v2[0]

Instruction fields are:

Element: Must be a single scalar element of the whole vector vt.

vs: The scalar element of vd is encoded as vs.

Type: One of the following operations:

Table 3-8 VU Divide Type Encoding

Type Instruction

0 0 0 vrcp

0 0 1 vrcpl

0 1 0 vrcph

0 1 1 vmov

1 0 0 vrsq

1 0 1 vrsql

1 1 0 vrsqh

1 1 1 vnop

0235

1 1 0 type
75

Vector Unit Instructions
The reciprocal (rcp) or reciprocal of the square root (rsq) of the scalar
element of vt is computed by table lookup and written to the scalar element
of vd.

The scalar element of vd is selected by the register number vs (0-7). Not the
contents of vs, but the instruction field vs bits.

 Single (16 bit) and double (32 bit) precision source values are supported,
with double precision sources supplied in two instructions.

The destination is a 32 bit value, written to two register elements in two
instructions.

For single precision sources, vrcp/vrsq supplies the source operand in
vt[element] and the low 16 bits of the result is written to vd[vs]. The upper
16 bits of the result is written by a subsequent vrcph/vrsqh.

For double precision sources, vrcph/vrsqh supplies the upper 16 bits of
the source (and writes the upper 16 bits of a previous vrcp/vrsq or
vrcpl/vrsql). A subsequent vrcpl/vrsql supplies the low 16 bits of the
source and writes the low 16 bits of the result.

The vmov type simply copies vt[element] to vd[vs], and is useful for
reordering scalar data.

vnop ignores vd, and no register is written.

The following table shows the source and destination operand bits from
each the vt and vd elements.

Table 3-9 VU Divide Instruction Summary

Type vt[element] vd[vs]

vnop NA no operation

vmov write source to result

vrcp, vrsq low low lookup source and write result

vrcph,
vrsqh

high high set source, write previous result
76

Revision 1.0 VU Divide Instructions
Reciprocal Table Lookup

The results are computed by a table lookup using 10 bits of precision. The
input is shifted up to remove leading 0’s (or 1’s) (actually, the first
non-leading digit is also removed, since we know what it is) and the next 10
bits are used to index into the reciprocal table. The 16 bits in the table at this
index are used to construct the result, which is obtained by shifting down an
appropriate number of bits and possibly complementing (for negative
input).

For rcp, the radix point of the output is shifted right compared to the input.
For example, for double precision rcp, with input format S15.16, the
output result will be S16.15, requiring the result to be multiplied by 2 in
order to maintain the same format.

For rsq, the radix point moves to the left by one-half the number of integer
bits. Think of it this way:

and:

vrcpl,
vrsql

low low lookup source and previous, write result

Type vt[element] vd[vs]

input a 2
k=

table 1

a 2k
-------------------=
77

Vector Unit Instructions
so we need to also take the sqrt of the exponent:

so the result does not have the same radix point as the input.

Higher Precision Results

Algorithms which require higher precision can perform Newton-Raphson
iteration on the result, such as:

R’ = R*(2-R*X); /* for VRCP */

 or

R’ = R*(3-R*X)/2; /* for VRSQ */

Several divide results can be assembled into two vector registers, the high
and low double precision reciprocal, for parallel Newton’s iteration. Square
root can be performed by multiplying the result of vrsq by the source
operand:

sqrt(X) = X * 1/sqrt(X);

Vector Divide Examples

The following code illustrates several vector divide operations. In this
section, the following notation is used:

• I is a signed 16-bit integer.

• F is an unsigned 16-bit fraction.

• IF is a 32-bit number, with the signed upper 16 bits contained in
one register, and the unsigned lower 16 bits contained in a second
register.

• _int is a named vector register holding a signed 16 bit number.

result 1

a 2

k
2

-------------------=
78

Revision 1.0 VU Divide Instructions
• _frac is a named vector register holding an unsigned 16 bit
fraction.

• dev_null is a named vector register containing all zeros.

A single precision reciprocal:

vrcp sres_frac[0], s_int[0]
vrcph sres_int[0], dev_null[0]

A double precision reciprocal:

vrcph sres_int[0], s_int[0]
vrcpl sres_frac[0], s_frac[0]
vrcph sres_int[0], dev_null[0]

Multiple calculations can be chained together:

vrcph sres_int[0], s_int[0]
vrcpl sres_frac[0], s_frac[0]
vrcph sres_int[0], t_int[0]
vrcpl tres_frac[0], t_frac[0]
vrcph tres_int[0], dev_null[0]

In the above cases, the input format was S15.16, so after the reciprocal the
radix point moves to the right, so we must shift by 1 (multiply by 2.0) in
order to correct the result:

vmudn sres_frac, sres_frac, vconst[2] # constant of 2
vmadm sres_int, sres_int, vconst[2]
vmadn sres_frac, dev_null, dev_null[0]

Square root reciprocals are similar. Note the adjustment of the radix point
after the reciprocal calculation:

double precision:
vrsqh dres_int[0], t_int[0]
vrsql dres_frac[0], t_frac[0]
vrsqh dres_int[0], vconst[0]

 # generate constant to shift radix point:
addi $1, $0, 0x200
mtc2 $1, vconst[6]

 # shift right by 8 bits.
vmudl dres_frac, dres_frac, vconst[3]
79

Vector Unit Instructions
vmadm dres_int, dres_int, vconst[3]
 vmadn dres_frac, vconst, vconst[0]
80

Revision 1.0
Chapter 4

4. RSP Coprocessor 0

This chapter describes the RSP Coprocessor 0, or system control coprocessor.

The RSP Coprocessor 0 does not perform the same functions or have the
same registers as the R4000-series Coprocessor 0. In the RSP, Coprocessor 0
is used to control the DMA (Direct Memory Access) engine, RSP status, RDP
status, and RDP I/O.
81

RSP Coprocessor 0
Register Descriptions

RSP Point of View

RSP Coprocessor 0 registers are programmed using the mtc0 and mtf0
instructions which move data between the SU general purpose registers and
the coprocessor 0 registers.

Table 4-1 RSP Coprocessor 0 Registers

Register
Number

Name Defined in
rsp.h

Access
Mode

Description

$c0 DMA_CACHE RW I/DMEM address for DMA.

$c1 DMA_DRAM RW DRAM address for DMA.

$c2 DMA_READ_LENGTH RW DMA READ length (DRAM I/DMEM).

$c3 DMA_WRITE_LENGTH RW DMA WRITE length (DRAM I/DMEM).

$c4 SP_STATUS RW RSP Status.

$c5 DMA_FULL R DMA full.

$c6 DMA_BUSY R DMA busy.

$c7 SP_RESERVED RW CPU-RSP Semaphore.

$c8 CMD_START RW RDP command buffer START.

$c9 CMD_END RW RDP command buffer END.

$c10 CMD_CURRENT R RDP command buffer CURRENT.

$c11 CMD_STATUS RW RDP Status.

$c12 CMD_CLOCK RW RDP clock counter.

$c13 CMD_BUSY R RDP command buffer BUSY.

$c14 CMD_PIPE_BUSY R RDP pipe BUSY.

$c15 CMD_TMEM_BUSY R RDP TMEM BUSY.
82

Revision 1.0 Register Descriptions
$c0

This register holds the RSP IMEM or DMEM address for a DMA transfer.

On power-up, this register is 0x0.

$c1

This register holds the DRAM address for a DMA transfer. This is a physical
memory address.

On power-up, this register is 0x0.

$c2, $c3

These registers hold the DMA transfer length; $c2 is used for a READ, $c3
is used for a WRITE.

1112 0

1 12

IMEM or DMEM addressa
a=0: DMEM
a=1: IMEM

23 0

24

DRAM address

11 0

12

length

19 12

8

count

31 20

12

skip
83

RSP Coprocessor 0
The three fields of this register are used to encode arbitrary transfers of
rectangular areas of DRAM to/from contiguous I/DMEM. length is the
number of bytes per line to transfer, count is the number of lines, and skip is
the line stride, or skip value between lines. This is illustrated in Figure 4-1:

Figure 4-1 DMA Transfer Length Encoding

Note: DMA length and line count are encoded as (value - 1), that is a line
count of 0 means 1 line, a byte length of 7 means 8 bytes, etc.

A straightforward linear transfer will have a count of 0 and skip of 0,
transferring (length+1) bytes.

The amount of data transferred must be a multiple of 8 bytes (64 bits), hence
the lower three bits of length are ignored and assumed to be all 1’s.

DMA transfer begins when the length register is written.

For more information about DMA transfers, see section “DMA” on page 96.

On power-up, these registers are 0x0.

count

skip

length

length = 7
skip = 8
count = 10

DRAM

DMEM
84

Revision 1.0 Register Descriptions
$c4

This register holds the RSP status.

Table 4-2 RSP Status Register

bit field
Access
Mode

Description

0 h RW RSP is halted.

1 b R RSP has encountered a break instruction.

2 db R DMA is busy.

3 df R DMA is full.

4 if R IO is full.

5 ss RW RSP is in single-step mode.

6 ib RW Interrupt on break.

7 s0 RW signal 0 is set.

8 s1 RW signal 1 is set.

9 s2 RW signal 2 is set.

10 s3 RW signal 3 is set.

11 s4 RW signal 4 is set.

12 s5 RW signal 5 is set.

13 s6 RW signal 6 is set.

14 s7 RW signal 7 is set.

6

1

ib

7

1

s0

4

1

if

5

1

ss

2

1

db

3

1

df

0

1

h

1

1

b

14

1

s7

12

1

s5

13

1

s6

10

1

s3

11

1

s4

8

1

s1

9

1

s2
85

RSP Coprocessor 0
The ‘broke’, ‘single-step’, and ‘interrupt on break’ bits are used by the
debugger.

The signal bits can be used for user-defined synchronization between the
CPU and the RSP.

On power-up, this register contains 0x0001.

When writing the RSP status register, the following bits are used.

Table 4-3 RSP Status Write Bits

bit Description

0
(0x00000001)

clear HALT.

1
(0x00000002)

set HALT.

2
(0x00000004)

clear BROKE.

3
(0x00000008)

clear RSP interrupt.

4
(0x00000010)

set RSP interrupt.

5
(0x00000020)

clear SINGLE STEP.

6
(0x00000040)

set SINGLE STEP.

7
(0x00000080)

clear INTERRUPT ON BREAK.

8
(0x00000100)

set INTERRUPT ON BREAK.

9
(0x00000200)

clear SIGNAL 0
86

Revision 1.0 Register Descriptions
10
(0x00000400)

set SIGNAL 0.

11
(0x00000800)

clear SIGNAL 1.

12
(0x00001000)

set SIGNAL 1.

13
(0x00002000)

clear SIGNAL 2.

14
(0x00004000)

set SIGNAL 2.

15
(0x00008000)

clear SIGNAL 3.

16
(0x00010000)

set SIGNAL 3.

17
(0x00020000)

clear SIGNAL 4.

18
(0x00040000)

set SIGNAL 4.

19
(0x00080000)

clear SIGNAL 5.

20
(0x00100000)

set SIGNAL 5.

21
(0x00200000)

clear SIGNAL 6.

22
(0x00400000)

set SIGNAL 6.

23
(0x00800000)

clear SIGNAL 7.

24
(0x01000000)

set SIGNAL 7.

bit Description
87

RSP Coprocessor 0
$c5

This register maps to bit 3 of the RSP status register, DMA_FULL. It is read
only.

On power-up, this register is 0x0.

$c6

This register maps to bit 2 of the RSP status register, DMA_BUSY. It is read
only.

On power-up, this register is 0x0.

$c7

This register is a hardware semaphore for synchronization with the CPU,
typically used to share the DMA activity. If this register is 0, the semaphore
may be acquired. This register is set on read, so the test and set is atomic.
Writing 0 to this register releases the semaphore.

GetSema:
mfc0 $1, $c7
bne $1, $0, GetSema
nop

do critical work

ReleaseSema:
mtc0 $0, $7

On power-up, this register is 0x0.

$c8

This register holds the RDP command buffer START address. Depending on
the state of the RDP STATUS register, this address is interpreted by the RDP
88

Revision 1.0 Register Descriptions
as either a 24 bit physical DRAM address, or a 12 bit DMEM address
(see $c11).

On power-up, this register is undefined.

$c9

This register holds the RDP command buffer END address. Depending on
the state of the RDP STATUS register, this address is interpreted by the RDP
as either a 24 bit physical DRAM address, or a 12 bit DMEM address
(see $c11).

On power-up, this register is undefined.

$c10

This register holds the RDP command buffer CURRENT address. This
register is READ ONLY. Depending on the state of the RDP STATUS

23 0

24

RDP Command Start

23 0

24

RDP Command End
89

RSP Coprocessor 0
register, this address is interpreted by the RDP as either a 24 bit physical
DRAM address, or a 12 bit DMEM address (see $c11).

On power-up, this register is 0x0.

$c11

This register holds the RDP status.

Table 4-4 RDP Status Register

bit field
Access
Mode

Description

0 x RW Use XBUS DMEM DMA or DRAM DMA.

1 f RW RDP is frozen.

2 fl RW RDP is flushed.

3 g RW GCLK is alive.

4 tb R TMEM is busy.

5 pb R RDP PIPELINE is busy.

6 cb R RDP COMMAND unit is busy.

23 0

24

RDP Command Current

6

1

cb

7

1

cr

4

1

tb

5

1

pb

2

1

fl

3

1

g

0

1

x

1

1

f

10

1

sv

8

1

db

9

1

ev
90

Revision 1.0 Register Descriptions
When bit 0 (XBUS_DMEM_DMA) is set, the RDP command buffer will
receive data from DMEM (see $c8, $c9, $c10).

On power-up, the GCLK, PIPE_BUSY, and CMD_BUF_READY bits are set,
the DMA_BUSY bit is undefined, and all other bits are 0.

When writing the RDP status register, the following bits are used.

Table 4-5 RSP Status Write Bits (CPU VIEW)

7 cr R RDP COMMAND buffer is ready.

8 db R RDP DMA is busy.

9 ev R RDP COMMAND END register is valid.

10 sv R RDP COMMAND START register is
valid.

bit Description

0
(0x0001)

clear XBUS DMEM DMA.

1
(0x0002)

set XBUS DMEM DMA.

2
(0x0004)

clear FREEZE.

3
(0x0008)

set FREEZE.

4
(0x0010)

clear FLUSH.

5
(0x0020)

set FLUSH.

6
(0x0040)

clear TMEM COUNTER.

bit field
Access
Mode

Description
91

RSP Coprocessor 0
$c12

This register holds a clock counter, incremented on each cycle of the RDP
clock. This register is READ ONLY.

On power-up, this register is undefined.

$c13

This register holds a RDP command buffer busy counter, incremented on
each cycle of the RDP clock while the RDP command buffer is busy. This
register is READ ONLY.

On power-up, this register is undefined.

7
(0x0080)

clear PIPE COUNTER.

8
(0x0100)

clear COMMAND COUNTER.

9
(0x0200)

clear CLOCK COUNTER

bit Description

23 0

24

RDP Clock Counter

23 0

24

RDP Command Busy Counter
92

Revision 1.0 Register Descriptions
$c14

This register holds a RDP pipe busy counter, incremented on each cycle of
the RDP clock that the RDP pipeline is busy. This register is READ ONLY.

On power-up, this register is undefined.

$c15

This register holds a RDP TMEM load counter, incremented on each cycle of
the RDP clock while the TMEM is loading. This register is READ ONLY.

On power-up, this register is undefined.

CPU Point of View

The RSP Coprocessor 0 registers (and certain other RSP registers) are
memory-mapped into the host CPU address space.

23 0

24

RDP Pipe Busy Counter

23 0

24

RDP TMEM Load Counter
93

RSP Coprocessor 0
Bit patterns for READ and WRITE access are the same as described in the
previous section.

Table 4-6 RSP Coprocessor 0 Registers (CPU VIEW)

Register
Number

Address
Access
Mode

Description

$c0 0x04040000 RW I/DMEM address for DMA.

$c1 0x04040004 RW DRAM address for DMA.

$c2 0x04040008 RW DMA READ length (DRAM I/DMEM).

$c3 0x0404000c RW DMA WRITE length (DRAM I/DMEM).

$c4 0x04040010 RW RSP Status.

$c5 0x04040014 R DMA full.

$c6 0x04040018 R DMA busy.

$c7 0x0404001c RW CPU-RSP Semaphore.

$c8 0x04100000 RW RDP command buffer START.

$c9 0x04100004 RW RDP command buffer END.

$c10 0x04100008 R RDP command buffer CURRENT.

$c11 0x0410000c RW RDP Status.

$c12 0x04100010 R RDP clock counter.

$c13 0x04100014 R RDP command buffer BUSY.

$c14 0x04100018 R RDP pipe BUSY.

$c15 0x0410001c R RDP TMEM BUSY.
94

Revision 1.0 Register Descriptions
Other RSP Addresses

These are also memory-mapped for the CPU.

Table 4-7 Other RSP Addresses (CPU VIEW)

Address
Access
Mode

Description

0x04000000 RW RSP DMEM (4096 bytes).

0x04001000 RW RSP IMEM (4096 bytes).

0x04080000 RW RSP Program Counter (PC), 12 bits.
95

RSP Coprocessor 0
DMA

All data operated on by the RSP must first be DMA’d into DMEM. RSP
programs can also use DMA to load microcode into IMEM.

Note: loading microcode on top of the currently executing code at the PC
will result in undefined behavior.

Alignment Restrictions

All data sources and destinations for DMA transfers must be aligned to
8 bytes (64 bits), in both DRAM and I/DMEM.

Transfer lengths must be multiples of 8 bytes (64 bits).

Timing

Peak transfer rate is 8 bytes (64 bits) per cycle. There is a DMA setup
overhead of 6-12 clocks, so longer transfers are more efficient.

IMEM and DMEM are single-ported memories, so accesses during DMA
transfers will impact performance.

DMA Full

The DMA registers are double-buffered, having one pending request and
one current active request. The DMA FULL condition means that there is an
active request and a pending request, so no more requests can be serviced.

DMA Wait

Waiting for DMA completion is under complete programmer control. When
DMA_BUSY is cleared, the transaction is complete.

If there is a pending DMA transaction, this transaction will be serviced
before DMA_BUSY is cleared.
96

Revision 1.0 DMA
DMA Addressing Bits

Since all DMA accesses must be 64-bit aligned, the lower three bits of source
and destination addresses are ignored and assumed to be all 0’s.

Transfer lengths are encoded as (length - 1), so the lower three bits of the
length are ignored and assumed to be all 1’s.

The DMA LENGTH registers can be programmed with a line count and line
stride, to transfer arbitrary rectangular pieces of memory (such as a portion
of an image). See Figure 4-1, “DMA Transfer Length Encoding,” on page 84,
for more information.

CPU Semaphore

The CPU-RSP semaphore should be used to share DMA resources. Since the
CPU could possibly DMA data to/from the RSP while the RSP is running,
this semaphore is necessary to share the DMA engine.

Note: The current graphics and audio microcode assume the CPU will
not be DMA’ing data to/from the RSP while the RSP is running. This
eliminates the need to check the semaphore (on the RSP side), saving a
few instructions.

DMA Examples

The following examples illustrate programming RSP DMA transactions:
97

RSP Coprocessor 0
Figure 4-2 DMA Read/Write Example

 ###
 # Procedure to do DMA reads/writes.
 # Registers:
 # $20 mem_addr
 # $19 dram_addr
 # $18 dma_len
 # $17 iswrite?
 # $11 used as tmp
.name mem_addr, $20
.name dram_addr, $19
.name dma_len, $18
.name iswrite, $17
.name tmp, $11

DMAproc: # request DMA access: (get semaphore)
 mfc0 tmp, SP_RESERVED
 bne tmp, zero, DMAproc
 # note delay slot
 DMAFull: # wait for not FULL:
 mfc0 tmp, DMA_FULL
 bne tmp, zero, DMAFull
 nop
 # set DMA registers:
 mtc0 mem_addr, DMA_CACHE
 # handle writes:
 bgtz iswrite, DMAWrite
 mtc0 dram_addr, DMA_DRAM
 j DMADone
 mtc0 dma_len, DMA_READ_LENGTH
 DMAWrite:
 mtc0 dma_len, DMA_WRITE_LENGTH
 DMADone:
 jr return

clear semaphore, delay slot
 mtc0 zero, SP_RESERVED
.unname mem_addr
.unname dram_addr
.unname dma_len
.unname iswrite
.unname tmp
 #
 ##
98

Revision 1.0 DMA
Figure 4-3 DMA Wait Example

 ##
 # Procedure to do DMA waits.
 #
 # Registers:
 #
 # $11 used as tmp
 #
.name tmp, $11

DMAwait:
 # request DMA access: (get semaphore)
 mfc0 tmp, SP_RESERVED
 bne tmp, zero, DMAwait
 # note delay slot
 WaitSpin:
 mfc0 tmp, DMA_BUSY
 bne tmp, zero, WaitSpin
 nop
 jr return

clear semaphore, delay slot
 mtc0 zero, SP_RESERVED
.unname tmp
 #
 #
 ###
99

RSP Coprocessor 0
Controlling the RDP

The RDP has an independent DMA engine which reads commands from
DMEM or DRAM into the command buffer. The RDP command buffer
registers are programmed to direct the RDP from where to read the
command data.

How to Control the RDP Command FIFO

RDP commands are transferred from memory to the command buffer by the
RDP’s DMA engine.

The RDP command buffer logic examines the CMD_CURRENT and
CMD_END registers and will transfer data, 8 bytes (64 bits) at a time,
advancing CMD_CURRENT, until CMD_CURRENT = CMD_END.

CMD_START and CMD_END registers are double buffered, so they can be
updated asynchronously by the RSP or CPU while the RDP is transferring
data. Writing to these registers will set the START_VALID and/or
END_VALID bits in the RDP status register, signaling the RDP to use the new
pointers once the current transfer is complete.

When a new CMD_START pointer is used, CMD_CURRENT is reset to
CMD_START.

Algorithm to program the RDP Command FIFO:

• start with CMD_START and CMD_END set to the same initial
value.

• write RDP commands to memory, beginning at CMD_START.

• when an integral number of RDP commands have been stored to
memory, advance CMD_END (CMD_END should point to the next
byte after the RDP command).

• keep advancing CMD_END as subsequent RDP commands are
stored to memory.
100

Revision 1.0 Controlling the RDP
Examples

The XBUS is a direct memory path between the RSP (and DMEM) and the
RDP. This example uses a portion of DMEM as a circular FIFO to send data
to the RDP.

This example uses an “open” and “close” interface; the “open” reserves
space in the circular buffer, then the data is written, the “close” advances the
RDP command buffer registers.

The first code fragment illustrates the initial conditions for the RDP
command buffer registers.

Figure 4-4 RDP Initialization Using the XBUS

The OutputOpen function contains the most complicated part of the
algorithm, handling the “wrapping” condition of the circular FIFO. The
wrapping condition waits for CMD_CURRENT to advance before
re-programming new CMD_START and CMD_END registers.

 # XBUS initialization
 addi $4, zero, DPC_SET_XBUS_DMEM_DMA
 addi outp, zero, 0x1000 # DP init conditions
 mtc0 $4, CMD_STATUS
 mtc0 outp, CMD_START
 mtc0 outp, CMD_END
101

RSP Coprocessor 0
Figure 4-5 OutputOpen Function Using the XBUS

.name dmemp, $20

.name dramp, $19

.name outsz, $18 # caller sets to max size of write
 # open(size) - wait for size avail in
 # ring buffer.
 # - possibly handle wrap
 # - wait for ‘current’ to get
 # out of the way
 .ent OutputOpen
OutputOpen: # check if the packet will fit in the buffer
 addi dramp, zero, (RSP_OUTPUT_OFFSET

+ RSP_OUTPUT_SIZE8)
 add dmemp, outp, outsz
 sub dramp, dramp, dmemp
 bgez dramp, CurrentFit
 nop
WrapBuffer: # packet won’t fit, wait for current to wrap
 mfc0 dramp, CMD_STATUS
 andi dramp, dramp, 0x0400
 bne dramp, zero, WrapBuffer
AdvanceCurrent: # wait for current to advance
 mfc0 dramp, CMD_CURRENT
 addi outp, zero, RSP_OUTPUT_OFFSET
 beq dramp, outp, AdvanceCurrent
 nop
 mtc0 outp, CMD_START # reset START
CurrentFit: # done if current_address <= outp
 mfc0 dramp, CMD_CURRENT
 sub dmemp, outp, dramp
 bgez dmemp, OpenDone

 # loop if current_address <= (outp + outsz)
 add dmemp, outp, outsz
 sub dramp, dmemp, dramp
 bgez dramp, CurrentFit
 nop
OpenDone:
 jr return
 nop
 .end OutputOpen
102

Revision 1.0 Controlling the RDP
After calling OutputOpen, the program writes the RDP commands to
DMEM, advancing outp. Once the complete RDP command is written to
DMEM, OutputClose is called.

Figure 4-6 OutputClose Function Using the XBUS

##
OutputClose
##
 .ent OutputClose
OutputClose:
 #
 # XBUS RDP output
 #
 jr return
 mtc0 outp, CMD_END
 .end OutputClose
.unname outsz
.unname dramp
.unname dmemp
103

RSP Coprocessor 0
104

Revision 1.0
Chapter 5

5. RSP Assembly Language

This chapter describes the RSP Assembly Language, as accepted by the
rspasm assembler.

Although different in many fundamental ways, there are some similarities
with the MIPS assembly language, described in the document “MIPSPro
Assembly Language Programmer’s Guide” (Order number 007-2418-001).
The reader is encouraged to be familiar with this document, as we will
occasionally use it as a frame of reference to describe the RSP assembly
language.

The machine language format of the RSP instructions is based on the R4000
instruction set; the reader is referred to the “MIPS R4000 Microprocessor
User’s Manual”1 for additional information.

In the following chapter, “the assembler” refers to the rspasm assembler.

1 Heinrich, J., “MIPS R4000 Microprocessor User’s Manual”, Prentice Hall Publishing, 1993, ISBN 0-13-1-5925-4.
105

RSP Assembly Language
Different From Other MIPS Assembly Languages

Why?

Although the RSP uses the R4000 architecture, it is a specialized processor
designed for a special purpose. The assembly language is similarly
restricted, and does not require the full richness of the MIPS Assembly
Language.

In particular, MIPS Assembly Language is designed to be generated by C,
Fortran, and Pascal compilers; it therefore lacks many functions of an
assembly language designed for human programmers, as well as having
extra constructs in order to support these compilers.

The RSP also has limited resources, most notably only 1K instructions of
IMEM. RSP programs by definition must be small and highly optimized, so
a simpler assembly language is well-suited.

The RSP is also a proprietary processor, its implementation and
programming interface is not publicly available. The RSP programming
interface is designed to be incompatible with other MIPS products.

Major Differences from the R4000 Instruction Set

The scalar unit (SU) instruction set uses only a subset of the R4000
instruction set. See “Missing Instructions” on page 27.

The “pseudo-opcodes” or assembly directives are different from the MIPS
Assembly Language. Many of the MIPS directives that are designed for
high-level program flow, compilers, or large objects are not necessary.
Likewise, we have added many new directives to make the language more
human-friendly (register naming, compile-time diagnostics, etc.).

The machine instructions for the RSP vector unit (VU) instructions use the
MIPS coprocessor extensions. For ease of programming, we have adopted
friendlier mnemonics and a less “coprocessor-like” syntax for their use.
106

Revision 1.0 Syntax
Syntax

Tokens

The assembler has these tokens:

• identifiers

• constants

• operators

The assembler lets you put whitespace (blank characters, tabs, or newlines)
anywhere between tokens. Whitespace must separate adjacent identifiers or
constants that are not otherwise separated (by an expression operator, for
instance).

Multiple statements per line are permitted, as are single statements which
span multiple lines.

Identifiers

An identifier consists of a case-sensitive sequence of alphanumeric
characters, plus the underscore (_) character.

Identifiers can be up to 31 characters long, and the first character must be
alphabetic.

The value of an identifier can be set explicitly with the .symbol directive.

Constants

The assembler supports the following types of constants. All numeric
constants are interpreted as two’s complement numbers.

• Decimal constants, which consist of a sequence of decimal digits
[0123456789]* without a leading 0.
107

RSP Assembly Language
• Hexadecimal constants, which consist of the characters 0x (or 0X)
followed by a sequence of hexadecimal digits
[0123456789abcdefABCDEF]*.

• Octal constants, which consist of a leading zero followed by a
sequence of octal digits [01234567]*.

• String constants, which consist of any sequence of alphanumeric
characters (except double quotes) enclosed in double quotes. String
constants are only used for the .print directive.

Operators

The following tokens comprise the list of operators:

• Instruction mnemonics, a sequence of lowercase alphanumeric
characters that correspond to the opcodes listed in Appendix A,
“RSP Instruction Set Details.”

• Directive mnemonics, a sequence of lowercase alphabetic
characters that correspond to the list in“Assembly Directives” on
page 114.

• Expression operators: +, -, *, /, %, ~, ^, &, |, <<, >>

• Other character sequences that make up the instruction syntax,
such as square brackets ‘[]’, parentheses ()’, the colon ‘:’, the comma
‘,’, and the period ‘.’.

Comments

The assembler accepts three forms of comments:

• C-like comments, /*...*/. Anything between the beginning and
ending C comment sequence is ignored. (Note: if cpp is used before
assembly, cpp will remove these comments before the assembler
can parse them)

• # comments. Anything from the ‘#’ to the end of the line is ignored.
(Note: comments with the ‘#’ in column one will confuse the C
pre-processor, cpp, if it is invoked on the source code before
assembly)
108

Revision 1.0 Syntax
• ; comments. Anything from the ‘;’ to the end of the line is ignored.

Program Sections

An RSP program has only two sections, a text section (.text) and a data
section (.data).

The text section is assembled in sequence, with only one base address for
assembly (see .text directive).

The data section is built up in sequence, however multiple data section base
addresses are permitted (see .data directive).

A program may switch between text and data segments many times, using
.text or .data directives without base addresses.

Labels

A label is an identifier with a colon (:) appended. There can be no
whitespace between the identifier and the colon. Labels can be used as
program labels (targets of branching instructions) or in the data segment to
define DMEM addresses (and later used as constants or in expressions).

Multiple consecutive labels in the data section are permitted, they evaluate
to the same value.

Multiple consecutive labels in the text section are not permitted.

Labels in the text section can also be followed by directives. In this case, the
value of the label is the address of the next executable instruction.

Keywords

Reserved keywords include all operators listed in the section “Operators”
on page 108.

Reserved keywords cannot be used as identifiers.
109

RSP Assembly Language
If the assembly source code is passed through another program (such as a
macro pre-processor like m4), additional reserved keywords may be
implied, if they are reserved by that program.

Expressions

An expression is a sequence of symbols that represent a value. All assembler
expressions evaluate to an integer data type. The assembler does arithmetic
with two’s complement integers using 32 bits of precision. Expressions
follow precedence rules and consist of:

• Expression Operators

• Identifiers

• Constants

Expression Operators

The list of expression operators include:

Table 5-1 Expression Operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder (or Modulo)

<< Shift Left

>> Shift Right (NOT sign extended)

^ Bitwise EXCLUSIVE OR

& Bitwise AND

| Bitwise OR

~ Bitwise COMPLEMENT
110

Revision 1.0 Syntax
Precedence

Expressions can be grouped with parentheses (recommended) or you can
rely on the following precedence rules:

Note: The expression operator precedence differs from that of the C
programming language.

Expression Restrictions

The simplified assembly language of the RSP imposes certain restrictions
upon the use of expressions:

• Any identifier used in an expression must be defined before use.
The expression is evaluated at parsing time, it cannot be delayed
until the value of a forward-referencing symbol is determined.

• Identifiers cannot be used in expressions used as a branch target or
as a vector register element.

• Identifiers cannot be used in expressions used in conjunction with
the data initialization directives (.word, .half, .byte).

Note: Identifiers by themselves can be used as values for the
.word and .half directives, including forward-referencing
identifiers (this is a special case). Note that you can assign an

- Minus (unary)

+ Plus (unary)

Table 5-2 Expression Operator Precedence

least binding, lowest precedence: binary +,-

... binary *,/,%,<<,>>,^,&,|

most binding, highest precedence unary +,-,~

Table 5-1 Expression Operators

Operator Meaning
111

RSP Assembly Language
expression to a temporary identifier using the .symbol directive,
then use this temporary identifier by itself to initialize a data
directive.

Throughout this document, expressions that cannot contain identifiers are
referred to as iexpressions (integer expressions).

Registers

The syntax for referring to the scalar unit (SU) registers is a dollar sign ($),
followed by an integer in the range of 0...31. No whitespace between the
dollar sign and the integer is permitted.

The syntax for referring to the vector unit (VU) registers is a dollar sign ($),
followed by a ‘v’, followed by an integer in the range of 0...31. No
whitespace between the dollar sign, the ‘v’, and the integer is permitted.

The syntax for referring to the coprocessor 0 control registers is a dollar sign
($), followed by a ‘c’, followed by an integer in the range of 0...31. No
whitespace between the dollar sign, the ‘c’, and the integer is permitted.

Registers can be named using the .name directive, associating an identifier
with a scalar register, vector register, or control register.

The following special built-in register names are also available:

• $sp is scalar register $29

• $at is scalar register $1

• $ra is scalar register $31

• $s8 is scalar register $30

• $vco is the vector control register VCO

• $vcc is the vector control register VCC

• $vce is the vector control register VCE
112

Revision 1.0 Syntax
Vector Register Element Syntax

In some circumstances, a scalar element of a vector register may be specified.
These circumstances include the target register of most vector
computational instructions and the source/destination register of all vector
loads, stores, and moves.

For vector computational instructions, a vector register element syntax is
one of:

• an integer (or integer expression) in the range 0...7, enclosed by
square brackets ([]), representing the ordinal index of one of the 8
16-bit vector elements of the register.

• an integer (or integer expression) in the range 0...3, followed by
the letter ‘h’, enclosed by square brackets ([]), representing the
ordinal index of one of the 4 16-bit vector elements of the register
halves.

• an integer (or integer expression) in the range 0...1, followed by
the letter ‘q’, enclosed by square brackets ([]), representing the
ordinal index of one of the 2 16-bit vector elements of the register
quarters.

For vector loads, stores, and moves, the vector register element syntax is as
follows:

• an integer (or integer expression) in the range 0...15, enclosed
by square brackets ([]), representing which of the 16 bytes of the
register to use as a source or destination.

In any case where a vector element may optionally be specified, but is not, a
0 is assumed.

Additional usage of vector register element syntax is explained along with
the instructions that use them in a later chapter.

Program Statements

A program statement consists of an optional label, an operator keyword, and
the operand(s). The operator may be a scalar instruction or a vector
instruction.
113

RSP Assembly Language
Assembly Directives

Directives, or ‘pseudo-opcodes’ are instructions to the assembler that are
interpreted at compile time. They do not generate executable machine
instructions.

They exist to initialize data, direct the compilation, provide error checking,
etc.

A directive is a period (.) followed by a sequence of lowercase alphabetic
characters.

For this section, the following notation is used: An expression is a legal
assembler expression, which may include identifiers (which have been
defined before use). An iexpression is an integer expression, an expression
composed solely of integers and no identifiers. Optional parameters are
enclosed in square brackets []. Conditional parameters are denoted with a
vertical bar |.

.align

.align iexpression

The current location within the text or data section is aligned to the next
multiple byte boundary corresponding to the evaluated iexpression;
possibly adding padding.

For the text section, the only legal evaluations are multiples of 4 bytes.

.bound

.bound iexpression

This directive performs a check, printing out an error message and aborting
the program assembly if the current location within the text or data section
is not aligned to the next multiple byte boundary corresponding to the
evaluated iexpression.
114

Revision 1.0 Assembly Directives
.byte
.byte iexpression

One byte of the data section is allocated and initialized to the value of the
iexpression.

Since one byte is not sufficient to hold the address of any symbol in DMEM
or IMEM, an identifier is not permitted.

This directive is only permitted in the data section.

.data
.data [expression]

Switch to the data section. All data initialization directives must be
contained in the data section.

If the optional expression is present, it is evaluated and used as the base
address to continue packing the data section. Only the least significant 12
bits of the base address is used, since DMEM is only 4K bytes.

Multiple base addresses are permitted, any “holes” between initialized data
will remain un-initialized (all 0’s). The assembler keeps track of the
maximum address initialized, and all data up to that point (including any
holes) will be output.

.dmax

.dmax iexpression

This directive performs a check, printing out an error message and aborting
the program assembly if the current location within the text or data section
exceeds the value corresponding to the evaluated iexpression.

This is useful during compilation to ensure that you do not exceed IMEM or
DMEM limits.
115

RSP Assembly Language
.end

.end identifier [, expression]

End a procedure. The assembler outputs debugging information for the gvd
debugger, including the beginning and ending locations of procedures.

.ent

.ent identifier [, expression]

Begin a procedure. The assembler outputs debugging information for the
gvd debugger, including the beginning and ending locations of procedures.

.half

.half identifier | iexpression

Two bytes (one half word) of the data section are allocated and initialized to
the value of the identifier or the iexpression.

The identifier may be a forward-referencing symbol which is not defined
yet. This is useful for building program jump tables which must be filled in
during the second pass of the assembler. In order to accommodate this
useful feature, we accept the restriction that any expression used to initialize
this data be an iexpression, not an expression.

Since there are only 4K bytes of IMEM and DMEM, 16-bits is sufficient to
hold the address of any symbol.

This directive is only permitted in the data section.

.name

.name identifier, register

The identifier is associated with the register.

The register may be a scalar, vector, or control register, and must be specified
using proper register syntax.
116

Revision 1.0 Assembly Directives
.print

.print string-constant [, expression][, expression]...

The quoted string constant is printed to stderr during assembly.

The string constant may contain C-like numeric printf conversions (%d,%x,
etc.) and the expressions will be evaluated and printed to stderr.

A maximum of four expressions are permitted per .print directive.

If this directive has a label associated with it, the label cannot be contained
in an expression being printed.

.space

.space expression

If we are in the data section, expression number of bytes are allocated and
filled with zeros. The new current location in the data section will be equal
to the previous location plus expression bytes.

If we are in the text section, (expression >> 2) number of instructions are
padded and filled with nop’s, and the new program counter for assembly
will be equal to the old program counter plus expression bytes.

If we are in the text section, the expression should also account for any
assembly base, if used.

.symbol

.symbol identifier, expression

The identifier is entered into the symbol table with the value of expression.

.text

.text [expression]
117

RSP Assembly Language
Switch to the text section. All program instructions must be contained in the
text section.

If the optional expression is present, it is evaluated and used as the base
address for assembling the program. Only the least significant 12 bits of the
base address is used, since IMEM is only 4K bytes.

Note: If the base address for assembly is changed during the course of
compilation, unpredictable results will occur. There should be only one
.text directive with a base address.

.unname

.unname identifier

The identifier is removed from the symbol table.

Usually this is used to free up a named register when you are finished using
it, but it could be used to free up another program identifier.

.word

.word identifier | iexpression

Four bytes (one word) of the data section are allocated and initialized to the
value of the identifier or the iexpression.

The identifier may be a forward-referencing symbol which is not defined
yet. This is useful for building program jump tables which must be filled in
during the second pass of the assembler. In order to accommodate this
useful feature, we accept the restriction that any expression used to initialize
this data be an iexpression, not an expression.

This directive is only permitted in the data section.
118

Revision 1.0 BNF Specification of the RSP Assembly Language
BNF Specification of the RSP Assembly Language

This section presents a formal specification of the RSP assembly language
using a Backus-Naur Form (BNF). Comments are not shown because they
are removed by the parser during token scanning.

<program> <instruction> | <program> <instruction>

<instruction> <directive> |
<label> <directive> |
<label> <label> <directive> |
<scalarInstruction> |
<label> <scalarInstruction> |
<vectorInstruction> |
<label> <vectorInstruction>

<directive> .align <iexpression> |
.bound <iexpression> |
.byte <iexpression> |
.data |
.data <iexpression>
.dmax <iexpression>
.end |
.end <identifier> |
.ent <identifier> |
.ent <identifier> , <integer> |
.half <identifier> |
.half <iexpression> |
.name <identifier> , <scalarRegister> |
.name <identifier> , <vectorRegister> |
.name <identifier> , <controlRegister> |
.print <qstring> |
.print <qstring> , <expression> |
119

RSP Assembly Language
.print <qstring> , <expression> , <expression> |

.print <qstring> , <expression> , <expression> ,
<expression> |

.print <qstring> , <expression> , <expression> ,
<expression> , <expresion> |

.space <expression> |

.symbol <identifier> , <expression> |

.text |

.text <expression> |

.unname <identifier> |

.word <identifier> |

.word <iexpression>

<scalarInstruction> <regOp> <scalarRegister> |
<regRegOp> <scalarRegister> |
<regRegOp> <scalarRegister> , <scalarRegister> |
<regRegOp> <scalarRegister> , <controlRegister> |
<regRegRegOp> <scalarRegister> , <scalarRegister> ,

<scalarRegister> |
<regImmOp> <scalarRegister> , <expression> |
<regRegImmOp> <scalarRegister> , <expression> |
<regRegImmOp> <scalarRegister> , <scalarRegister> ,

<expression> |
<regOffsetOp> <scalarRegister> , <expression> |
<regOffsetOp> <expression> |
<regRegOffsetOp> <scalarRegister> , <scalarRegister> ,

<expression> |
<regOffsetBaseOp> <scalarRegister> , <expression> (

<scalarRegister>) |
<regRegShiftOp> <scalarRegister> , <scalarRegister> ,

<expression> |
<sRegRegRegOp> <scalarRegister> , <scalarRegister> ,

<scalarRegister> |
<targetOp> <expression> |
120

Revision 1.0 BNF Specification of the RSP Assembly Language
<vRegsRegOp> <vectorRegister> [<element>] ,
<expression> (<scalarRegister>) |

<sRegvRegOp> <scalarRegister> , <vectorRegister> |
<sRegvRegOp> <scalarRegister> , <vectorRegister> [

<element>] |
<noOperandOp>

<vectorInstruction> <veRegvRegvRegOp> <vectorRegister> ,
<vectorRegister> , <vectorRegister> |

<veRegvRegvRegOp> <vectorRegister> , <vectorRegister> ,
<vectorRegister> [<element>] |

<vdRegvRegOp> <vectorRegister> [<element>] ,
<vectorRegister> [<element>]

<regOp> jr

<regRegRegOp> add | addu | and | nor | or | slt | sltu | sub
| subu | xor

<regImmOp> lui

<regRegImmOp> addi | addiu | andi | ori | slti | sltiu |
xori

<regOffsetOp> bgez | bgezal | bgtz | blez | bltz | bltzal

<regRegOffsetOp> beq | bne

<regOffsetBaseOp> lb | lbu | lw | lh | lhu | sb | sh | sw

<regRegShiftOp> sll | sra | srl

<sregRegRegOp> sllv | srav | srlv
121

RSP Assembly Language
<targetOp> j | jal

<vRegsRegOp> lbv | lsv | llv | ldv | lqv | lrv | lpv | luv |
lhv | lfv | ltv | sbv | ssv | slv | sdv | sqv
| srv | spv | suv | shv | sfv | swv | stv

<sRegvRegOp> mfc2 | cfc2 | mtc2 | ctc2

<noOperandOp> nop | vnop | break

<veRegvRegvRegOp> vmulf | vmacf | vmulu | vmacu | vrndp |
vrndn | vmulq | vmacq | vmudh | vmadh |
vmudm | vmadm | vmudn | vmadn | vmudl |
vmadl | vadd | vsub | vabs | vaddc | vsubc
| vsar | vand | vnand | vor | vnor | vxor |
vnxor | vlt | veq | vne | vge | vcl | vch |
vcr | vmrg

<vdRegvRegOp> vmov | vrcp | vrsq | vrcph | vrsqh | vrcpl |
vrsql

<expression> (<expression>) |
<integer> |
<identifier> |
~ <expression> |
<expression> & <expression> |
<expression> | <expression> |
<expression> ^ <expression> |
<expression> << <expression> |
<expression> >> <expression> |
<expression> * <expression> |
<expression> / <expression> |
<expression> % <expression> |
<expression> + <expression> |
<expression> - <expression> |
122

Revision 1.0 BNF Specification of the RSP Assembly Language
- <expression> |
+ <expression>

<iexpression> (<iexpression>) |
<integer> |
~ <iexpression> |
<iexpression> & <iexpression> |
<iexpression> | <iexpression> |
<iexpression> ^ <iexpression> |
<iexpression> << <iexpression> |
<iexpression> >> <iexpression> |
<iexpression> * <iexpression> |
<iexpression> / <iexpression> |
<iexpression> % <iexpression> |
<iexpression> + <iexpression> |
<iexpression> - <iexpression> |
- <iexpression> |
+ <iexpression>

<scalarRegister> <identifier> |$<integer> | $sp | $s8 | $at | $ra

<vectorRegister> <identifier> | $v<integer> | $vco | $vcc | $vce

<controlRegister> <identifier> | $c<integer>

<element> <iexpression> | <iexpression>h | <iexpression>q

<identifier> <alpha> <alphanumeric>*

<alphanumeric> {<alpha> | <digit> | _}*

<qstring> “ {<ASCII text> | <whitespace> | <C print specifier>}* “
123

RSP Assembly Language
<alpha> a | b | c | d | e | f | g | h | i | j | k | l | m | n | o |
p | r | s | t | u | v | w | x | y | z | A | B | C
| D | E | F | G | H | I | J | K | L | M | N | O | P
| Q | R | S | T | U | V | W | X | Y | Z

<integer> <digit>* | 0x<hexdigit>* | 0X<hexdigit>* | 0<octdigit>*

<digit> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hexdigit> <digit> | a | b | c | d | e | f | A | B | C | D | E | F

<octdigit> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
124

Revision 1.0
Chapter 6

6. Advanced Information

This chapter expands on some advanced topics, such as DMEM usage, RSP
performance, code overlays, and the CPU-RSP relationship.

Examples and information presented in this chapter are often one of many
possible approaches, the reader is encouraged to treat this chapter as
inspiration, not rigorous instruction.
125

Advanced Information
 DMEM Organization and Usage

Planning the layout of DMEM is an essential step of writing an RSP
program. A convenient DMEM layout can save precious instructions and
lead to a more optimized and bug-free program.

There are typically parts of DMEM which can be or need to be allocated and
initialized at compile-time; the assembler’s data directives can accomplish
this. Although the data section is built up sequentially regardless of source
code files, it helps to keep all DMEM allocations centralized in one file,
rather than spreading it out over several source code files.

During compilation, the assembler will produce a .dat file which
represents the data section of the microcode object. This section should be
loaded into DMEM as part of the task loading effort. If you make this data
section as small as it can be, and keep it near the top of DMEM (0x04000000)
this task loading can be as fast as possible.

Be sure to compare the size of the data that must be initialized with the size
of the data loaded into DMEM via the task structure. Most programs use the
value SP_UCODE_DATA_SIZE, which is defined in ucode.h with a value of
2048 (bytes). This value might not be appropriate for every RSP program.

Jump Tables

Program “jump tables” can be constructed by initializing DMEM with
program labels. During the second pass of the assembler, these labels will be
resolved and the contents of DMEM will be initialized correctly.

Since IMEM is only 4K bytes, a half word is sufficient to hold any IMEM
address.

Constants

Program constants can be generated at compile-time and initialized in
DMEM. When needed, they can be loaded directly and used.
126

Revision 1.0 DMEM Organization and Usage
It can be convenient to reserve a VU register to hold an entire vector of
constants, available for use in vector computational instructions.

Labels in DMEM

Labels can be used in the data section to later reference offsets for the
purposes of loading or storing things.

Since DMEM is only 4K bytes, any DMEM address can be expressed with the
16 bit offset of a load/store instruction (and using the base register of $0).

Dynamic Data

Data which will be loaded or generated by the program does not need to be
initialized, however it may be useful to allocate space in your global DMEM
map at compile time.

Truncating the .dat file before building the ELF object to a size that
includes the static data, but not the dynamic data (which does not need to be
initialized) will result in a smaller ELF object and therefore less ROM and
DRAM usage.

Diagnostic Information

The assembler provides several useful directives for computing and/or
printing diagnostic information. These are most useful while laying out the
DMEM.

These directives include .bound, .align, .symbol, and .print.
All of these directives are explained in “Assembly Directives” on page 114.

Using temporary assembler symbols to compute sizes, alignment, and hold
diagnostic information is another useful tip.
127

Advanced Information
Performance Tips

Assembly language optimizations or vector processing tricks are beyond the
scope of this document, however it is worthwhile to mention a few issues
specifically relating to the RSP architecture.

Dual Execution

The RSP executes up to one Scalar Unit (SU) instruction and one Vector Unit
(VU) instruction per clock cycle; the most efficient RSP code exploits this.
Spreading loads, loop counting, and other SU “bookkeeping” code among
VU computations can greatly accelerate sections of code.

Of course this is not always possible, there is not always useful work that can
be done in both units.

Interleaving SU and VU code inhibits code readability somewhat; a
consistent coding style helps improve the chance of finding a bug that would
otherwise be hidden in an unreadable section of code.

This optimization technique is best left for last. As code is reorganized
during development and testing the dual-issue pattern will change.

Hint: “Keeping the both halves of the RSP busy” is going to be one
of your keys to maximum performance.

Vectorization

The computational power of the RSP lies in the Vector Unit (VU). Choice of
algorithm and data organization are the fundamental design decisions for
optimal RSP programs.

A vector architecture like the VU of the RSP, is a SIMD (Single-Instruction,
Multiple-Data) machine, meaning that one instruction may operate on
several pieces of data.

Reviewing the literature in computer architecture or compiler design, it is
apparent that certain kinds of programming constructs are especially good
(or bad) on a vector architecture:
128

Revision 1.0 Performance Tips
for loops Programming constructs like:
for (i=0; i<n; i++) {}

 perform the same thing on a bunch of data. This is
exactly a “vector” operation.

conversely,

switch Programming constructs which separate data
(switch(), if()), performing different tasks in
different data situations do not vectorize well.

scalar arithmetic General “bookkeeping” code, which increments a
counter, manipulates a pointer, etc. This kind of code is
usually bad because they are unique operations. (there
is a formal description of this: essentially there is a
“number of items”, below which it does not pay to use
vector operations. This has to do with vectorization
setup and pipeline priming.)

pointer de-reference For most vectorizing C compilers, accessing data
through pointer de-references is hard for vector
processors. Constructs like “a[b.x].value” are
preferred to pointer usage like “b->x->value”. This is
because computing structure offsets is a simple
addition, rather than another memory access. (This is
not a not a major point for the RSP, as we lack a
vectorizing C compiler)

There is another important lesson worth mentioning from the body of
previous vectorization work. Most of the recent efforts in compiler design
and high-level software engineering for SIMD systems are designed to be
scalable; as more vector units are added, performance improves. Lots of
recent work has been applied to developing good vectorizing compilers1. In
those efforts, the focus has been to automatically distribute the data across
the vector units and minimize vectorization start-up costs, letting the
programmer not really worry about the number of vector elements. This is
an important difference from our situation for two reasons: (1) we are
programming at a much lower level. We know how many vector elements

1 For a good introduction and references to further reading, consult Hennessy, J., Patterson, D., “Computer
Architecture, A Quantitative Approach”, Morgan Kauffmann Publishers, 1990, ISBN 1-55880-069-8.
129

Advanced Information
there are, and this number is not variable. (2) we have severe code space
constraints. Abstracting the vector unit size has severe implications on the
vector code start-up.

The point of this discussion is to observe that the hardware architecture is
clearly visible in the microcode. We program for a specific vector size, and
we waste no code generalizing data parallelism.

The good news is that this limitation also has a major benefit: We are
exposed to the hardware at a low enough level that we can, by inspection,
determine if the vector unit is fully utilized. This is rarely possible, if at all,
on a machine with an architecture or compiler designed for configurable
vector elements (like a Cray).

Hint: “Keeping the vector elements full” is going to be one of your
keys to maximum performance.

Software Pipelining

SIMD processing achieves maximum performance when there is a high
degree of data parallelism. This simply means that their are lots of
independent data items that can all be operated on at once.

An important idea in vector processing is that data recurrence is not
allowed. Consider this code fragment:

for (i=0; i<n; i++) {
a[i] = a[i-1] * 2.0;

}

In this example, we could not vectorize this loop because element a[i]
depends on element a[i-1]. The elements are not independent. This
provides a restriction on the kind of loops we can vectorize and the
organization of our data (which “axis” we choose to vectorize). It also
suggests games we might want to play with our loops (See “Loop Inversion”
on page 131.).

A similar problem, another kind of pipelining problem, is data dependency.
Because the vector unit has a non-zero pipeline delay, we cannot attempt to
use the results of an instruction until several clock cycles after that
instruction is “executed”:
130

Revision 1.0 Performance Tips
vadd $v1, $v2, $v3
vadd $v4, $v4, $v1

In this example, the second vadd instruction could not execute until the first
vadd has completed and written back its result. There is a data dependency
on register $v1. The result will be a pipeline stall that will effectively
serialize the vector code, seriously dampening its performance.

Note: Fortunately, the hardware does do register usage locking in this
case; the above code may be slow, but at least it is guaranteed to generate
the correct results.

If a data dependency cannot be avoided, try rearranging code so that at least
some useful work is done during the delay.

Hint: “Keeping the pipeline full” is going to be one of your keys to
maximum performance.

Loop Inversion

A common trick used in vector programming is loop inversion. This means
swapping inner and outer loops, in order to create the simplest loop with the
largest number of iterations so we can maximize vectorization.

Consider the following code fragment which could be used for vertex
translation:

 for (i = 0; i < num_pts; i++) {/* for each point */
for (j=0; j<4; j++) {/* for each dimension */

point[i][j] += offset[j];
}

}

Since we can only vectorize the inner-most operation (the addition), we
would only be using 50% of our vector unit.

Now suppose we have an infinite number of vector elements. If we did, we
could swap the loops and do the outer loop four times, vectorizing the inner
loop across num_pts elements:

for (i = 0; i < 4; i++) {/* for each dimension */
for (j=0; j<num_pts; j++) {/* for each point */

point[j][i] += offset[i];
}

131

Advanced Information
}

In this fictitious example, we have theoretically improved our program’s
speed by (num_pts - 4)*(time to do the translation). A big
improvement! This technique is common to help vectorizing compilers
“recognize” loops that can be vectorized. The compiler will actually break
up the loop into multiple vector operations the size of the number of vector
elements.

Loop inversion is not free. By changing which loop is vectorized, we change
the start-up costs associated with the loop. In terms of microcode, this means
the organization of the data, the use of registers, and the “overhead”
associated with this code fragment will be different.

An additional consideration for our implementation is that we know the
vector unit size and characteristics. While the above code fragment might be
better code for a Cray machine with a vectorizing compiler and unknown
CPU resources, on the RSP we must vectorize the loop by hand, breaking up
the iterations into 8 elements at a time (the size of our vector unit).

Careful evaluation of each loop should include trying to maximize the
vector elements (keeping them filled) as well as avoiding unnecessary loop
start-up and loop overhead.

Loop Unrolling

Unrolling a loop or section of code, while consuming precious IMEM space
and registers, can potentially double the speed of a section of code that has
lots of data dependencies. Unrolling a loop is the simplest way to perform
useful work during pipeline delays.

Program Flow of Control

Since program flow constructs like conditional branches interfere with
vectorization, it is often more efficient to do some “extra” work (which
vectorizes) and decide later which result to use, rather than having a more
complex program using conditional execution to minimize computation.

For example, in the triangle rasterization setup code, the vertex attributes (r,
g, b, a, s, t, w, z) fit nicely in vector registers. Rather than having complicated
132

Revision 1.0 Performance Tips
code which decides which attributes are necessary, we always compute
them all and only output the ones we are interested in.

This approach also saves precious IMEM space.

Profiling RSP Code

The RSP simulator can help profile your code, it can show pipeline stalls,
load delays, and DMA wait states. The RSP clock (CLK) of the simulator is
always available as a register.

Note: Although it is accurate within a few percent, the RSP simulator is
not cycle accurate with the actual hardware. The differences are mainly
in VU loads and moves.

It is also useful to use the RDP Command Counter to profile code on the
actual hardware. This value can be sampled, saved to DMEM or DMA’d to
DRAM for later analysis. A sample code fragment to read and store the RDP
Command Counter is shown in Figure 6-1, “Real-time Clock Watching on
the RSP,” on page 134.
133

Advanced Information
Figure 6-1 Real-time Clock Watching on the RSP

Since IMEM is relatively small, critical sections of code can also be profiled
by inspection, examining the code and following the pipelining rules, “Mary
Jo’s Rules” on page 43

Dividing the number of instructions a section of code uses by the number of
clocks it takes to execute the section gives you a ratio that expresses
dual-execution efficiency and VU pipeline usage. A perfect ratio of 2.0
means you are executing two instructions per clock (one SU, one VU) with
no pipeline delays. A ratio less than 1.0 means you are experiencing
execution stalls due to data dependencies and/or not keeping both
execution units busy.

Inserting dummy display list instructions (temporarily customizing the
microcode) to mark coarse timing boundaries is another useful trick.

In the RSP microcode:

Checkpoint the clock before the critical section:
mfc0 $1, $c12
sw $1, 0($0)

(Perform the critical section)

Checkpoint the clock after the critical section:
mfc0 $1, $c12
lw $2, 0($0)
sub $1, $1, $2
sw $1, 0($0)

After the task has completed, this value can be retrieved by the application code on the CPU:

while (__osSpRawReadIo((u32) (SP_DMEM_START + 0x0),
(u32 *) &(scratch_int)))

;

Depending on what you are timing, take care to consider that the RDP Counter is only 24 bits (be careful of wrap
conditions).

A more complex example might DMA data to DRAM for later analysis instead.
134

Revision 1.0 Microcode Overlays
Microcode Overlays

One of the challenges of RSP programming is working within the limited
instruction memory. IMEM is an explicitly managed resource; you are free
to load new code as you see fit.

RSP microcode loading can be divided into two situations: a swap, initiated
by the host CPU, which loads the entire IMEM while the RSP is halted, and
an overlay, which loads part of IMEM and is triggered by the currently
executing RSP program. The latter case is the most interesting and is the
subject of this section, covering related architectural issues and explaining
one scheme for microcode overlays in detail.

Memory System Implications

The Rambus memory system is most efficient at large block transfers, so
microcode loading can approach peak memory transfer speeds.

Like all DMA transfers, the source and destination must be 64-bit aligned;
some care must be taken planning microcode overlays to meet this
restriction. The assembler provides several directives to guarantee code
alignment.

Since IMEM is single-ported memory, only one control unit can access it at
a time; if microcode is loaded while a program is currently executing, IMEM
accesses are shared between the DMA engine and the RSP control unit
(which is fetching instructions). This means that dynamic microcode
overlays can only approach 50% of peak DMA transfer rate.

Entirely Up to You

The decision to overlay microcode and the labor to perform the overlay must
be embedded in the RSP program. Overlay techniques involve the RSP
development tools, the RSP software, and possibly even the display list or
other data that the RSP program is designed to interpret.

Choosing when to overlay microcode should be done carefully; although
such DMA transfers are relatively efficient, they are not free.
135

Advanced Information
RSP Assembler Tricks

The RSP assembler rspasm has several features designed to assist
developing microcode overlays.

IMEM Alignment Alignment directives like .bound and .align can be
used in the text section to ensure that overlay destinations
are 64-bit aligned, as required by the DMA engine.

DMEM Initialization Initialization directives like .word and .half can be
used to create a table of information necessary to perform
overlays.

DMEM Labels Labels can be used in the .data section so that overlay
information can be easily accessed from the program.

DMEM Symbols Program symbols (labels) can be used to initialize DMEM
data, generating code overlay destinations (IMEM
addresses) automatically in the second pass of the
assembler.

External Symbol Tables The -S option to the assembler allows you to
specify another microcode object to use as an external
symbol table. This allows you to branch to locations outside
the current microcode object.

A Sample RSP Linker

While not a true “linker”, the program buildtask can be used to combine
multiple RSP objects (both text and data sections) into a larger object.

The buildtask algorithm is quite simple, it concatenates the text and data
sections, in the order supplied on the command line. It enforces 64-bit
alignment and computes the sizes and offsets from the beginning for each
different overlay object. This information is stored back in the data section
(beginning at 0x0, or the value supplied by the -d flag), completing a table
of information necessary to perform overlays.

The behavior of buildtask output is illustrated in Figure 6-2, “buildtask
Operation,” on page 137.
136

Revision 1.0 Microcode Overlays
Figure 6-2 buildtask Operation

size 0 dest 0
offset 0

size 1 dest 1
offset 1

size 2 dest 2
offset 2

size 3 dest 3
offset 3

.

.

.

ucode
object 3

ucode
object 2

ucode
object 1

ucode
object 0

offset 0

offset 1

offset 2

offset 3

size 0

size 1

size 2

size 3

alignment padding

Output Object Text Section Output Object Data Section

The offset field is 32 bits, the size and destination are both 16 bits.

The destination field is not generated by buildtask, it is generated by the assembler (usually as an IMEM
label).

At run time, the DRAM address of the microcode object (part of the OSTask structure) must be added to the
offset field to generate the correct DRAM address for each overlay.

Data objects for subsequent overlays may be redundant and need not be used. The -f argument can be used to
ignore these data sections.

ucode data
object 1

ucode data

object 3

ucode data
object 2

ucode data
object 0-d offset
137

Advanced Information
With this information, a DMA transaction can be programmed to load an
overlay into IMEM.

Overlay Example

To see exactly how this works, let’s examine the source code and Makefile
for a simple example.

Overlay Makefile

###
#
use the RSP linker ‘buildtask’ to construct the tasks
from the objects.
#
use the rsp2elf program to construct the debug
executables and library objects
#

gspLine3D:gspLine3D.u newt.u
${BUILDTASK} -f 1 -o $@ gspLine3D.u newt.u

gspLine3D.o:gspLine3D
${RSP2ELF} -p -r $?

...

###
#
build the individual objects.
#

newt.u:gspLine3D.u ../newt.s ${COMMON_GFX_CODE}
${RSPASM} ${LCINCS} ${LCDEFS} -DNEWT_ALONE \

-S gspLine3D.u -o $@ ../newt.s

gspLine3D.u:${COMMON_GFX_CODE} ${LINE_CODE}
${RSPASM} ${LCINCS} ${LCDEFS} -o $@ ../gmain.s

In this example, there are two microcode objects: the main program,
gspLine3D.u, and one overlay, newt.u. Each is compiled separately;
138

Revision 1.0 Microcode Overlays
notice the usage of the -S flag used when compiling newt.u in order to
access the external symbols of gspLine3D.u.

The -f argument passed to buildtask prevents concatenation of the
newt.dat section; this data section is redundant (any static data needed for
newt.u is planned for and included in gspLine3D.u).

The rsp2elf program is used to build an ELF object using buildtask’s
output, this ELF object is what will be linked into the game application by
makerom.

Overlay DMEM Initialization

This code fragment shows the initialization of DMEM for this example.

 ###
 ########### OVERLAY TABLE #########################
 ###
 #
 # Program module overlay table. Offsets and sizes are
 # filled in by the ‘buildtask’ utility, destinations are
 # the responsibility of the ucode.
 #
 # OVERLAY_OFFSET: offset from beginning of microcode in
 # RDRAM and in .o file (filled in by
 # buildtask).
 # OVERLAY_SIZE: length of overlay in bytes (filled in
 # by buildtask).
 # OVERLAY_DEST: where in IMEM to put the overlay
 # (filled in by assembler).
 #
 # The overlay table must be the first thing in DMEM.
 # The 1st overlay must be the initial code.
 #

.bound 0x80000000

OVERLAY_TAB_OFFSET:

#define OVERLAY_OFFSET 0
#define OVERLAY_SIZE 4
#define OVERLAY_DEST 6

 #==
 #============= MAIN CODE OVERLAY ==========
139

Advanced Information
 #==
OVERLAY_0_OFFSET:
 # main module.
 .word 0x0 # offset from start of code
 .half 0x0 # size in bytes (-1)
 .half 0x1080 # destination

 #==
 #============= NEWTONS OVERLAY ============
 #==
OVERLAY_1_OFFSET:
OVERLAY_NEWTON:
 # Newton’s module laid over boot code.
 .word 0x0 # offset from start of code
 .half 0x0 # size in bytes (-1)
 .half 0x1000 # destination

The size and offset of the microcode objects will be filled in by buildtask,
see Figure 6-2, “buildtask Operation,” on page 137.

Overlay Initialization Code

Before we load the overlay we must update the overlay table with the correct
DRAM address for the start of the code. This is usually done immediately at
the beginning of the program, since we require the OSTask structure which
has been copied into DMEM (and may need to be overwritten by the
program).

 ###
 #
 # code overlays:
 #
 # update table to be real DRAM address:

lw $5, OS_TASK_OFF_UCODE($1) # ucode base pointer

 # PATCH NEWTON ONLY
lw $2, (OVERLAY_1_OFFSET + OVERLAY_OFFSET)(zero)
add $2, $2, $5
sw $2, (OVERLAY_1_OFFSET + OVERLAY_OFFSET)(zero)
140

Revision 1.0 Microcode Overlays
Overlay Decision Code

Deciding when to perform an overlay is specific to each program and
overlay function and therefore an example is not necessary. In this case, we
always perform the overlay, since we are loading it over the RSP boot
microcode (reclaiming precious IMEM space!)

Overlay DMA Code

Actually overlaying the new microcode is the same as any other DMA
transfer (See “DMA” on page 96); we use the information from the overlay
table to set the source, destination, and length of the transfer.

 # overp points to the proper entry in the
 # overlay table.
loadOverlay:
 lw dram_addr, OVERLAY_OFFSET(overp)
 lh dma_len, OVERLAY_SIZE(overp)
 lh imem_addr, OVERLAY_DEST(overp)
 jal DMAproc
 addi iswrite, zero, 0 # delay slot
 jal DMAwait
 nop
 jr overeturn
 nop

Remember to encode the length as (length-1), or else you might over-write
some important instructions.
141

Advanced Information
 Controlling the RSP from the CPU

The operating system running on the CPU includes facilities to control the
RSP. The major function calls and some RSP details are explained in this
section.

Starting RSP Tasks

The man page for osSpTaskStart() explains the CPU-side details of
managing the RSP. The include file sptask.h contains additional
information in the comments.

The algorithm to start a task is as follows:

• Halt the RSP (if it is not halted already).

• DMA the OSTask structure into the low part of DMEM
(0x1000 - sizeof(OSTask)).

• DMA the RSP boot microcode into IMEM at 0x0.

• Set the RSP PC to 0x0.

• Clear the HALT bit of the RSP status register.

Once the HALT bit is cleared, the RSP begins execution using the current PC
and contents of IMEM.

RSP Boot Microcode

The boot microcode copies the task microcode into IMEM (at 0x80) and the
task data into DMEM (at 0x0). Since the task data might overwrite the
OSTask structure, it is the task’s responsibility to either not need the
OSTask or guarantee that it is not overwritten (by initializing less than 4K
bytes of DMEM).

Each microcode task typically has “initialization” work of its own; usually
this is performed immediately, possibly loading in additional microcode.
142

Revision 1.0 Controlling the RSP from the CPU
Hidden OS Functions

There are undocumented OS functions to access the RSP from the CPU.
These functions should not be used in the regular course of game
programming; their use may interfere with other core OS functionality. They
can be useful for RSP program development, particularly post-mortem
analysis of RSP state.

These functions are internal OS calls and are not guaranteed to be supported
in the future; use at your own risk.

__osSpDeviceBusy

int
__osSpDeviceBusy(void)

This function returns 1 if the RSP is busy performing IO operations.

__osSpRawStartDma()

s32
__osSpRawStartDma(s32 direction, u32 devAddr,

void *dramAddr, u32 size)

Based on the input direction (OS_READ or OS_WRITE), set up a DMA
transfer between RDRAM and RSP memory address space.

devAddr and dramAddr specifies the DMA buffer address of RSP
memory and RDRAM, respectively. size contains the number of bytes
to transfer. Note that these addresses must be 64-bit aligned and size
must be a multiple of 8 bytes. Maximum transfer size is 4K bytes.

If the interface is busy, return a -1 and abort the operation.

__osSpRawReadIo()
s32
__osSpRawReadIo(u32 devAddr, u32 *data)

Perform a 32-bit programmed IO read from RSP memory address
space. Note that devAddr must be 32-bit aligned.

If the interface is busy, return a -1 and abort the operation.
143

Advanced Information
__osSpRawWriteIo()

s32
__osSpRawWriteIo(u32 devAddr, u32 data)

Perform a 32-bit programmed IO write to RSP memory address space.
Note that devAddr must be 32-bit aligned.

If the interface is busy, return a -1 and abort the operation.

__osSpGetStatus()

u32
__osSpGetStatus(void)

Return the RSP status register.

__osSpSetStatus()

void
__osSpSetStatus(u32 data)

Update the RSP status register.

__osSpSetPc()

s32
__osSpSetPc(u32 data)

Set the RSP program counter (PC).

If the RSP is not halted, return a -1 and abort the operation.

Address spaces used as parameters to these functions are defined in the file
rcp.h.
144

Revision 1.0 Microcode Debugging Tips
Microcode Debugging Tips

There are two different environments for debugging microcode: (1) the RSP
simulator (rsp or rspg) and (2) the coprocessor view of Gameshop (gvd).

Each tool has its advantages; Gameshop is discussed in separate
documentation. This section explains the first technique and provides some
other tips.

The first tip is to develop as much of the RSP microcode as possible using the
RSP simulator. The tools are more friendly, more powerful, and the
turn-around time is much shorter. In order to facilitate this, you may wish to
also develop driver or stub tools that can create the data necessary to debug
the program.

Once everything is mostly working, and you progress to integrating the new
microcode with an application running on the CPU, using the RSP simulator
becomes a little trickier. In order to use the RSP simulator you must create a
DRAM image containing all the necessary pieces for the RSP task, and an
OSTask structure. Briefly, the technique is:

• Run the RSP simulator.

• Copy the DRAM image into memory at 0x0.

• Copy the OSTask structure into the bottom of DMEM at
(0x04001000 - sizeof(OSTask)).

• Copy the rspboot microcode into IMEM at 0x04001000. Note
that this is not the ELF image of rspboot, but the RSP executable.

• Set the PC to 0x04001000.

• Run (or step) the RSP program.

At this point, everything is in place to execute a task on the RSP simulator.

The hardest step is creating the DRAM image that contains all the necessary
elements in their proper places. Fortunately, there are some tools to help
here:
145

Advanced Information
guDumpGbiDL() This library function can be called directly from the
game to dump the necessary pieces back out to the Indy. It
uses the rmonPrintf() and creates a (potentially very
large) ASCII file that can be read by gbi2mem.

guDumpGbiDL() works by saving the OSTask structure,
the microcode, the display list, and traversing the display
list following any data (textures, matrices, vertices, etc.)
pointers to save that data also. This results in the minimum
amount of data to transfer back to the Indy in order to
simulate the RSP task.

gbi2mem This tool takes the file dumped by guDumpGbiDL() and
creates the .mem and .tsk files, containing the DRAM
image and OSTask structure, respectively.

gbi2mem works by reading the ASCII file and creating a
binary DRAM image, with all objects located at the proper
address.

Since rmonPrintf() writes to the terminal, the proper invocation is to pipe
the output of gload to gbi2mem:

% gload | gbi2mem -o <filename>

This method of dumping data from the hardware back to the Indy is not
terribly efficient; it works best if the display list is as minimal as possible1.

1 One obvious improvement would be to use the binary host I/O interface, rather than the ASCII
rmonPrintf().
146

Revision 1.0 RSP Yielding
RSP Yielding

One of the more complex issues of synchronization between the CPU and
the RSP is the concept of yielding. The motivation for yielding is discussed
at length in higher-level documentation; some of the implementation details
are discussed here.

For typical applications with graphics and audio processing that must share
the resources of the RSP, there must be a higher-level synchronization to
assure that neither task is starved.

It is the nature of graphics processing that the amount of RSP processing
required on a frame-to-frame basis may be difficult to predict. The amount
of graphics computations can depend on the data in the scene, the location
of the camera, and other parameters of visual complexity. A varying amount
of graphics processing determines the “frame rate” of an application. If a
new graphics frame is not computed, the video circuitry will just re-display
the old frame.

Audio processing, on the other hand, is usually a function of sample rate,
number of voices, or other data which is more constant and easier to predict.
Audio processing is more susceptible to discontinuities caused by processor
starvation, however. If the next frame of audio is not computed, the audio
circuitry will not have any data to play, and the sound will stop (or click or
pop).

The solution implemented is to allow graphics tasks to yield, meaning that
at quiescent times, the graphics task politely inquires to see if the CPU is
requesting that it stop computation. If the answer is yes, the graphics task
saves its state to DMEM sufficiently so that it can be restarted, and the task
will exit.

The operating system discriminates a yield condition from a normal task
completion using the status register of the RSP. It then saves the contents of
DMEM and returns to the application so that the audio task may be
scheduled. When the graphics task is to be resumed, flags in the OSTask
structure tell the rspboot microcode to behave slightly differently and
restore the previously-yielded task.
147

Advanced Information
Requesting a Yield

An application requests an RSP task to yield by calling osSpTaskYield().

This function sets the Coprocessor 0 Status Register bit SP_SET_YIELD,
which is #define’d as SIG0 in rcp.h.

Checking for Yield

The microcode checks periodically for a yield request. It would be inefficient
to check too often, but it would also be dangerous to not check often enough,
possibly detecting the yield too late.

For the released graphics microcode, we check for the yield after processing
every display list command. The test is relatively cheap, only a few cycles,
and this guarantees that we will test every several hundred clock cycles at
the most.

we’re done with this command, do the next one (if
available)...
#

GfxDone:
stick our head up, see if we need to yield the SP.
If so,checkpoint everything then exit.
#

mfc0 yield, SP_STATUS # need to yield?
andi yield, yield, SP_STATUS_YIELD
bne yield, zero, RSPYield
lh overeturn, TASKYIELD(zero) # return where?

Yielding

The microcode’s responsibility during yield is, by design, minimal.

The microcode saves a handful of important registers to DMEM, then
DMA’s the necessary portion of DMEM to the yield buffer (originally
supplied to the task as part of the task header).

The microcode also sets the SP_YIELDED bit in the Coprocessor 0 Status
Register, this bit is #define’d as SIG1 in rcp.h.
148

Revision 1.0 RSP Yielding
Saving a Yielded Process

After requesting a yield, the host CPU must wait for the RSP task to finish
and verify that it actually yielded.

It might also modify internal state, so that the yielded task can be restarted.

Restarting a Yield Process

Restarting a previously yielded task is conceptually simple; the
previously-saved DMEM data (from the yield buffer) is used as the
ucode_data field in the task header, and the OS_TASK_YIELDED bit in the
task header is set.

The microcode will detect the OS_TASK_YIELDED bit in the task header
flags and perform the proper initialization, before resuming execution.

This initialization should include restoring registers (from the saved
DMEM) and possibly overlaying code segments.
149

Advanced Information
150

Appendix A

A. RSP Instruction Set Details

This appendix describes the machine-language format of the RSP
instructions and formally describes the behavior of each instruction.

Since the RSP instruction set conforms to the MIPS ISA, the format and
notation of this appendix is the same as Appendix A in the book “MIPS
R4000 Microprocessor User’s Manual”1.

Vector Unit instructions are also discussed in Chapter 3, “Vector Unit
Instructions.”

In this appendix, all variable subfields in an instruction format (such as rs,
rt, immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

In the instruction descriptions that follow, the Operation section describes
the operation performed by each instruction using a high-level language
notation.

Special symbols used in the notation are described in Table A-1, “RSP
Instruction Operation Notations,” on page 152.

1 Heinrich, J., “MIPS R4000 Microprocessor User’s Manual”, Prentice Hall Publishing, 1993, ISBN 0-13-1-5925-4.
151

Table A-1RSP Instruction Operation Notations

Symbol Meaning

 Assignment.

|| Bit string concatenation.

xy Replication of bit value x into a y-bit string. Note: x
is always a single-bit value.

xy...z Selection of bits y through z of bit string x.
Little-endian bit notation is always used. If y is less
than z, this expression is an empty (zero length) bit
string.

+ 2’s complement or floating-point addition.

- 2’s complement or floating-point subtraction.

* 2’s complement or floating-point multiplication.

div 2’s complement integer division.

mod 2’s complement modulo.

/ Floating-point division.

< 2’s complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR[x] General-Register x. The content of GPR[0] is
always zero. Attempts to alter the content of GPR[0]
have no effect.

CPR[z,x] Coprocessor unit z, general register x.

CCR[z,x] Coprocessor unit z, control register x.

VR[x][e] Vector Unit register x, byte e. (a VU register is 16
bytes wide)
152

Revision 1.0
Instruction Notation Examples

The following examples illustrate the application of some of the instruction
notation conventions:

ACC[e] Vector Unit Accumulator, element e. The ACC has
8 elements each 48 bits wide.

dmem[x] DMEM contents beginning at byte address x.

T+i: Indicates the time steps between operations. Each
of the statements within a time step are defined to
be executed in sequential order (as modified by
conditional and loop constructs). Operations which
are marked T+i: are executed at instruction cycle i
relative to the start of execution of the instruction.
Thus, an instruction which starts at time j executes
operations marked T+i: at time i + j. The
interpretation of the order of execution between two
instructions or two operations which execute at the
same time should be pessimistic; the order is not
defined.

Clamp_Signed(x) x is clamped to prevent overflow (signed clamp).

Table A-1RSP Instruction Operation Notations

Symbol Meaning
153

Example #1:

GPR[rt]

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General-Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15...0

Example #3:

VR[vt][e]15...0 (dmem[Addr]7...0 || 08)

Eight zero bits are concatenated with the byte of DMEM at
Addr, and assigned to the 16 bit element at byte e of VU register vt.

Example #4:

The 16 bit element at byte 2 of VU register vs is AND’d
with the 16 bit element at byte 2 of VU register vt,
the result is assigned to the 16 bit element at byte 2 of VU
register vd.

VR[vd][2]15...0 (VR[vs][2]15...0 and VR[vt][2]15...0)
154

Revision 1.0
155

156

Format:

add rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the
result. The result is placed into general register rd.

Since the RSP does not signal an overflow exception for ADD, this command behaves identically to
ADDU.

Operation:

Exceptions:

None

ADDAdd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ADD

T: GPR[rd] GPR[rs] + GPR[rt]

Revision 1.0

157

Format:

addi rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the
result. The result is placed into general register rt.

Since the RSP does not signal an overflow exception for ADDI, this command behaves identically
to ADDIU.

Operation:

 Exceptions:

None

ADDI Add Immediate

31 2526 2021 1516 0

ADDI rs rt immediate

6 5 5 16

0 0 1 0 0 0

ADDI

T: GPR [rt] GPR[rs] + ((immediate15)16 || immediate15...0)

158

Format:

addiu rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the
result. The result is placed into general register rt.

Since the RSP does not signal an overflow exception for ADDI, this command behaves identically
to ADDI.

Operation:

Exceptions:

None

ADDIU Add Immediate Unsigned

31 2526 2021 1516 0

ADDIU rs rt immediate

6 5 5 16

0 0 1 0 0 1

ADDIU

T: GPR [rt] GPR[rs] + ((immediate15)16 || immediate15...0)

Revision 1.0

159

Format:

addu rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the
result. The result is placed into general register rd.

Since the RSP does not signal an overflow exception for ADD, this command behaves identically to
ADD.

Operation:

Exceptions:

None

ADDU Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

ADDU

T: GPR[rd] GPR[rs] + GPR[rt]

160

Format:

and rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise
logical AND operation. The result is placed into general register rd.

Operation:

Exceptions:

None

ANDAnd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

AND

T: GPR[rd] GPR[rs] and GPR[rt]

Revision 1.0

161

Format:

andi rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a
bit-wise logical AND operation. The result is placed into general register rt.

Operation:

 Exceptions:

None

ANDI And Immediate

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16

0 0 1 1 0 0

ANDI

T: GPR[rt] 016 || (immediate and GPR[rs]15...0)

162

Format:

beq rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs and
the contents of general register rt are compared. If the two registers are equal, then the program
branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

BEQBranch On EqualBEQ
31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16

0 0 0 1 0 0

T: target (offset15)14 || offset || 02

condition (GPR[rs] = GPR[rt])
T+1: if condition then

PC11...0 PC11...0 + target11...0
 endif

Revision 1.0

163

Format:

bgez rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs
have the sign bit cleared, then the program branches to the target address, with a delay of one
instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

BGEZOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16

0 0 0 0 0 1 0 0 0 0 1

BGEZ

T: target (offset15)14 || offset || 02

condition (GPR[rs]31 = 0)
T+1: if condition then

 PC11...0 PC11...0 + target11...0
 endif

164

Format:

bgezal rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the
instruction after the delay slot is placed in the link register, r31. If the contents of general register
rs have the sign bit cleared, then the program branches to the target address, with a delay of one
instruction.

General register rs may not be general register 31, because such an instruction is not restartable.

 Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

BGEZAL Or Equal To Zero And Link
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 1

BGEZAL

T: target (offset15)14 || offset || 02

 condition (GPR[rs]31 = 0)

T+1: if condition then
 PC11...0 PC11...0 + target11...0
 endif

 GPR[31] PC + 8

Revision 1.0

165

Format:

bgtz rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs are
compared to zero. If the contents of general register rs have the sign bit cleared and are not equal
to zero, then the program branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

BGTZBranch On Greater Than Zero

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16

0 0 0 1 1 1 0 0 0 0 0

BGTZ

T: target (offset15)14 || offset || 02

 condition (GPR[rs]31 = 0) and (GPR[rs] 032)

T+1: if condition then
 PC11...0 PC11...0 + target11...0
 endif

166

Format:

blez rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs are
compared to zero. If the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

BLEZBranch on Less Than

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

Or Equal To Zero

0 0 0 1 1 0 0 0 0 0 0

BLEZ

T: target (offset15)14 || offset || 02

T+1: if condition then
 PC11...0 PC11...0 + target11...0
 endif

 condition (GPR[rs]31 = 1) or (GPR[rs] = 032)

Revision 1.0

167

Format:

bltz rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs
have the sign bit set, then the program branches to the target address, with a delay of one
instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

 Operation:

Exceptions:

None

BLTZBranch On Less Than Zero

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 0

BLTZ

T: target (offset15)14 || offset || 02

condition (GPR[rs]31 = 1)
T+1: if condition then

 PC11...0 PC11...0 + target11...0
 endif

168

Format:

bltzal rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the
instruction after the delay slot is placed in the link register, r31. If the contents of general register
rs have the sign bit set, then the program branches to the target address, with a delay of one
instruction.

General register rs may not be general register 31, because such an instruction is not restartable.

 Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

BLTZAL Zero And Link
Branch On Less Than

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 1

BLTZAL

T: target (offset15)14 || offset || 02

 condition (GPR[rs]31 < 0)

T+1: if condition then
 PC11...0 PC11...0 + target11...0
 endif

 GPR[31] PC + 8

Revision 1.0

169

Format:

bne rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot
and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs and
the contents of general register rt are compared. If the two registers are not equal, then the program
branches to the target address, with a delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

BNEBranch On Not Equal

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16

0 0 0 1 0 1

BNE

T: target (offset15)14 || offset || 02

condition (GPR[rs] GPR[rt])
T+1: if condition then

PC11...0 PC11...0 + target11...0
endif

170

Format:

break

Description:

A breakpoint occurs, halting the RSP and setting the SP_STATUS_BROKE bit in the RSP status
register.

When the SP_STATUS_INTR_BREAK is set in the RSP status register, the RSP interrupt is signaled
(MI_INTR_SP).

Operation:

Exceptions:

None

BREAKBreakpoint

31 2526

SPECIAL

6

0

BREAKcode

6 5

620

0 0 0 0 0 0 0 0 1 1 0 1

BREAK

T: break

Revision 1.0

171

Format:

cfc2 rt, rd

Description:

The contents of coprocessor 2 (VU) control register rd are loaded into general register rt.

Operation:

 Exceptions:

None

Coprocessor 2 (VU)CFC2

11

Move Control From

31 2526 2021 1516

COP2 CF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CFC2

T: data CCR[rd]
T+1: GPR[rt] data

172

Format:

ctc2 rt, rd

Description:

The contents of general register rt are loaded into control register rd of the VU (coprocessor unit 2).

Operation:

Exceptions:

None

CTC2

11

Move Control to

31 2526 2021 1516

COP2 CT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTC2
Coprocessor 2 (VU)

T: data GPR[rt]

T + 1: CCR[rd] data

Revision 1.0

173

Format:

j target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order bits of the
address of the delay slot. The program unconditionally jumps to this calculated address with a
delay of one instruction.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

J Jump

31 2526

J

6

0

target

26

0 0 0 0 1 0

J

T: temp target
T+1: PC11...0 temp11...2 || 02

174

Format:

jal target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order bits of the
address of the delay slot. The program unconditionally jumps to this calculated address with a
delay of one instruction. The address of the instruction after the delay slot is placed in the link
register, r31.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

JAL Jump And Link

31 2526

JAL

6

0

target

26

0 0 0 0 1 1

JAL

GPR[31] PC + 8

T: temp target

T+1: PC11...0 temp11...2 || 02

Revision 1.0

175

Format:

jalr rs
jalr rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of
one instruction. The address of the instruction after the delay slot is placed in general register rd.
The default value of rd, if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not have the same
effect when re-executed. However, an attempt to execute this instruction is not trapped, and the
result of executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must specify a
target register (rs) whose two low-order bits are zero.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

JALR Jump And Link Register

31 2526 2021 1516

SPECIAL rs 0

6 5 5

rd 0 JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0

JALR

T: tempGPR [rs]
GPR[rd] PC + 8

T+1: PC11...0 temp11...0

176

Format:

jr rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of
one instruction.

Since instructions must be word-aligned, a Jump Register instruction must specify a target register
(rs) whose two low-order bits are zero.

Since the RSP program counter is only 12 bits, only 12 bits of the calculated address are used.

Operation:

Exceptions:

None

JRJump Register

21 2031 2526

SPECIAL

6

0

JRrs 0

6 5

5 15 6

0 1 0 0 0

JR

T: temp GPR[rs]

T+1: PC11...0temp11...0

Revision 1.0

177

Format:

lb rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
DMEM address. The contents of the byte at the DMEM location specified by the effective address
are sign-extended and loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

 Exceptions:

None

LB Load Byte

31 2526 2021 1516 0

LB base rt offset

6 5 5 16

1 0 0 0 0 0

LB

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
GPR[rt]31...0 (dmem[Addr]7

24 || dmem[Addr11...0]7...0)

178

Format:

lbu rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
DMEM address. The contents of the byte at the DMEM location specified by the effective address
are zero-extended and loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

Exceptions:

None

LBULoad Byte Unsigned

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16

1 0 0 1 0 0

LBU

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
GPR[rt]31...0 (024 || dmem[Addr11...0]7..0)

Revision 1.0

179

Format:

lbv vt[element], offset(base)

Description:

This instruction loads a byte (8 bits) from the effective address of DMEM into byte e of vector
register vt.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

LBVinto Vector Register
Load Byte

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LBV

45

element

610 711

7

LBV
0 0 0 0 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
VR[vt][element]7...0 dmem[Addr11...0]7...0

180

Format:

ldv vt[element], offset(base)

Description:

This instruction loads a double (64 bits) from the effective address of DMEM into vector register vt
starting at byte e.

The effective address is computed by shifting the offset up by 3 bits and adding it to the contents
of the base register (a SU GPR).

The offset field of the instruction is encoded by shifting the offset used in the source code down 3
bit, so the offset used in the source code must be a multiple of 8 bytes.

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

LDVinto Vector Register
Load Double

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LDV

45

element

610 711

7

LDV
0 0 0 1 1

25

offset

T:
Addr ((offset15)13 || offset15...0 || 03) + GPR[base]
VR[vt][element]63...0 dmem[Addr11...0]63...0

Revision 1.0
Format:

lfv vt[element], offset(base)

Description:

This instruction loads every fourth byte of a 128-bit word into a VU register element. Since lfv only
moves four bytes, the element field selects the upper or lower group of four destination register
elements. The bytes are loaded with their MSB positioned at bit 14 in the register element. See
Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

LFVinto Vector Register
Load Packed Fourth

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LFV

45

element

610 711

7

LFV
0 1 0 0 1

25

offset
181

Operation:

Exceptions:

None

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...3

Addr = Addr + i * 4
VR[vt][element + i*2]15...0 (01 || dmem[Addr11...0]7...0 || 07)

endfor
182

Revision 1.0

183

Format:

lh rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
DMEM address. The contents of the halfword at the DMEM location specified by the effective
address are sign-extended and loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

 Exceptions:

None

LH Load Halfword

31 2526 2021 1516 0

LH base rt offset

6 5 5 16

1 0 0 0 0 1

LH

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
GPR[rt]31...0 (dmem[Addr]7

16 || dmem[Addr11...0]15..0)

184

Format:

lhu rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
DMEM address. The contents of the halfword at the DMEM location specified by the effective
address are zero-extended and loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

Exceptions:

None

LHULoad Halfword Unsigned

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16

1 0 0 1 0 1

LHU

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
GPR[rt]31...0 (016 || dmem[Addr11...0]15..0)

Revision 1.0
Format:

lhv vt[0], offset(base)

Description:

This instruction loads every second byte of a 128-bit word into a VU register element. The bytes are
loaded with their MSB positioned at bit 14 in the register element. See Figure 3-3, “Packed Loads
and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element should be 0.

This instruction could be used for unpacking pixel chroma (UV) values, as required by MPEG
video compression.

LHVinto Vector Register
Load Packed Half

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LHV

45

element

610 711

7

LHV
0 1 0 0 0

25

offset
185

Operation:

Exceptions:

None

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...7

Addr = Addr + i * 2
VR[vt][i*2]15...0 (01 || dmem[Addr11...0]7...0 || 07)

endfor
186

Revision 1.0

187

Format:

llv vt[element], offset(base)

Description:

This instruction loads a long (32 bits) from the effective address of DMEM into vector register vt
starting at byte e.

The effective address is computed by shifting the offset up by 2 bits and adding it to the contents
of the base register (a SU GPR).

The offset field of the instruction is encoded by shifting the offset used in the source code down 2
bit, so the offset used in the source code must be a multiple of 4 bytes.

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

LLVinto Vector Register
Load Long

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LLV

45

element

610 711

7

LLV
0 0 0 1 0

25

offset

T:
Addr ((offset15)14 || offset15...0 || 02) + GPR[base]
VR[vt][element]31...0 dmem[Addr11...0]31...0

188

Format:

lpv vt[0], offset(base)

Description:

This instruction loads eight consecutive bytes into the upper bytes of eight VU register elements.
See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element should be 0.

Operation:

Exceptions:

None

LPVinto Vector Register
Load Packed Bytes

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LPV

45

element

610 711

7

LPV
0 0 1 1 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...7

Addr = Addr + i
VR[vt][i*2]15...0 (dmem[Addr11...0]7...0 || 08)

endfor

Revision 1.0

189

Format:

lqv vt[0], offset(base)

Description:

This instruction loads a byte-aligned quad word (128 bits) from the effective address of DMEM up
to the 128 bit boundary, that is (address) to ((address & ~15) + 15), into vector register vt starting
at byte element 0 up to (address & 15). The remaining portion of the quad word can be loaded with
the appropriate LRV instruction. See Figure 3-2, “Long, Quad, and Rest Loads and Stores,” on
page 51.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

TOperation:

Exceptions:

None

LQVinto Vector Register
Load Quad

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LQV

45

0

610 711

7

LQV
0 0 1 0 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
VR[vt][0]127...0 dmem[Addr11...0]127...0

190

Format:

lrv vt[0], offset(base)

Description:

This instruction loads a byte-aligned quad word from the 128 bit aligned boundary up to the byte
address, that is (address & ~15) to (address - 1), into vector register byte element
(16 - (address & 15)) to 15. See Figure 3-2, “Long, Quad, and Rest Loads and Stores,” on page 51.
A LRV with a byte address of zero reads no bytes.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Operation:

Exceptions:

None

LRVinto Vector Register
Load Quad (Rest)

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LRV

45

0

610 711

7

LRV
0 0 1 0 1

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
VR[vt][0]127...0 dmem[Addr11...0]127...0

Revision 1.0

191

Format:

lsv vt[element], offset(base)

Description:

This instruction loads a short (16 bits) from the effective address of DMEM into vector register vt
starting at byte e.

The effective address is computed by shifting the offset up by 1 bit and adding it to the contents of
the base register (a SU GPR).

The offset field of the instruction is encoded by shifting the offset used in the source code down 1
bit, so the offset used in the source code must be a multiple of 2 bytes.

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

LSVinto Vector Register
Load Short

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LSV

45

element

610 711

7

LSV
0 0 0 0 1

25

offset

T:
Addr ((offset15)15 || offset15...0 || 01) + GPR[base]
VR[vt][element]15...0 dmem[Addr11...0]15...0

192

Format:

ltv vt[element], offset(base)

Description:

This instruction loads an aligned 128 bit memory word into a group of 8 vector registers, scattering
this memory word into a diagonal vector of shorts in 8 VU registers. The VU register number of
each slice is computed as (VT & 0x18) | ((Slice + (Element >> 1)) & 0x7) , which is to say that vt
specifies the beginning of an 8 register group.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

See “Transpose” on page 54.

Exceptions:

None

LTVinto Vector Register
Load Transpose

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LTV

45

element

610 711

7

LTV
0 1 0 1 1

25

offset

Revision 1.0

193

Format:

lui rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros. The result is placed
into general register rt.

Operation:

Exceptions:

None

LUI Load Upper Immediate

31 2526 2021 1516 0

LUI rt immediate

6 5 5 16

0 0 1 1 1 1

LUI

0
0 0 0 0 0

T: GPR[rt] immediate15...0 || 016

Format:

luv vt[0], offset(base)

Description:

This instruction loads eight consecutive bytes into the upper bytes of eight VU register elements.
The bytes are loaded with their MSB positioned at bit 14 in the register element. See Figure 3-3,
“Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

This instruction has three load delay slots (results are available in the fourth instruction following
this load). If an attempt is made to use the target register vt in a delay slot, hardware register
interlocking will stall the processor until the load is completed.

Note: The element specifier element should be 0.

This instruction could be used to unpack 8-bit pixel data such as RGBA or luma (Y) values.

LUVinto Vector Register
Load Unsigned Packed

31 26 2021 1516 0

LWC2 base vt

6 5 5
1 1 0 0 1 0

LUV

45

element

610 711

7

LUV
0 0 1 1 1

25

offset
194

Revision 1.0
Operation:

Exceptions:

None

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...7

Addr = Addr + i
VR[vt][i*2]15...0 (01 || dmem[Addr11...0]7...0 || 07)

endfor
195

196

Format:

lw rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
DMEM address. The contents of the word at the DMEM location specified by the effective address
are loaded into general register rt.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

 Exceptions:

None

LWLoad Word

31 2526 2021 1516 0

LW base rt offset

6 5 5 16

1 0 0 0 1 1

LW

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
GPR[rt]31...0 dmem[Addr11...0]31..0

Revision 1.0

197

Format:

mfc0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

Operation:

 Exceptions:

None

MFC0 Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 MF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC0

T: data CPR[0,rd]

T+1: GPR[rt] data

198

Format:

mfc2 rt, vd[e]

Description:

The 16-bit contents at byte element e of VU register vd are sign-extended and loaded into general
register rt.

Operation:

 Exceptions:

None

MFC2

7

Move From

31 2526 2021 1516

COP2 MF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC2 Coprocessor 2 (VU)
7 6

e

4

T: data15...0 VR[vd][e]15...0

T+1: GPR[rt]31...0 data15
16 || data15...0

Revision 1.0

199

Format:

mtc0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of CP0.

Operation:

Exceptions:

None

MTC0 Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 MT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00

MTC0

T: data GPR[rt]
T+1: CPR[0,rd] data

200

Format:

mtc2 rt, vd[e]

Description:

The least significant 16 bits of general register rt are loaded at byte element e of VU register vd.
Operation:

Exceptions:

None

MTC2

7

Move To

31 2526 2021 1516

COP2 MT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

MTC2 Coprocessor 2 (VU)
7 6

e

4

T: data15...0 GPR[rt]15...0

T+1: VR[vd][e]15...0 data15...0

Revision 1.0

201

Format:

nop

Description:

This instruction does nothing; it modifies no registers and changes no internal RSP state.

It is useful for program instruction padding or insertion into branch delay slots (when no useful
work can be done).

Operation:

Exceptions:

None

NOP Null Operation

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOP

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NOP

T: nothing happens

202

Format:

nor rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise
logical NOR operation. The result is placed into general register rd.

Operation:

Exceptions:

None

NOR Nor

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

NOR

T: GPR[rd] GPR[rs] nor GPR[rt]

Revision 1.0

203

Format:

or rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise
logical OR operation. The result is placed into general register rd.

Operation:

Exceptions:

None

OROr

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

OR

T: GPR[rd] GPR[rs] or GPR[rt]

204

Format:

ori rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a
bit-wise logical OR operation. The result is placed into general register rt.

Operation:

Exceptions:

None

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16

0 0 1 1 0 1

ORIOr ImmediateORI

T: GPR[rt] GPR[rs]31...16 || (immediate or GPR[rs]15...0)

Revision 1.0

205

Format:

sb rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
DMEM address. The least-significant byte of register rt is stored at the DMEM address.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

Exceptions:

None

SBStore Byte

31 2526 2021 1516 0

SB base rt offset

6 5 5 16

1 0 1 0 0 0

SB

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data GPR7...0
StoreDMEM (BYTE, data, Addr11...0)

206

Format:

sbv vt[element], offset(base)

Description:

This instruction stores a byte from a vector register vt into DMEM.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

SBVfrom Vector Register
Store Byte

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SBV

45

element

610 711

7

SBV
0 0 0 0 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data VR[vt][element]7...0
StoreDMEM (BYTE, data, Addr11...0)

Revision 1.0

207

Format:

sdv vt[element], offset(base)

Description:

This instruction stores a double word (64 bits) from a vector register vt into DMEM.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

SDVfrom Vector Register
Store Double

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SDV

45

element

610 711

7

SDV
0 0 0 1 1

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data VR[vt][element]63...0
StoreDMEM (DOUBLEWORD, data, Addr11...0)

208

Format:

sfv vt[element], offset(base)

Description:

This instruction stores a byte from each of four VU regsiter elements, to every fourth byte of a
128-bit word in DMEM. Since sfv only moves four bytes, the element field selects the upper or
lower group of four destination register elements. The bytes are taken from the register elements
with their MSB positioned at bit 14. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

SFVfrom Vector Register
Store Packed Fourth

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SFV

45

element

610 711

7

SFV
0 1 0 0 1

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...3

Addr = Addr + i * 4
data VR[vt][element + i*2]14...7
StoreDMEM (BYTE, data, Addr11...0)

endfor

Revision 1.0

209

Format:

sh rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form an
unsigned DMEM address. The least-significant halfword of register rt is stored at the DMEM
address.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

Exceptions:

None

SH Store Halfword

31 2526 2021 1516 0

SH base rt offset

6 5 5 16

1 0 1 0 0 1

SH

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data GPR15...0
StoreDMEM (HALFWORD, data, Addr11...0)

210

Format:

shv vt[0], offset(base)

Description:

This instruction stores a byte from each of eight VU regsiter elements, to every second byte of a
128-bit word in DMEM. The bytes are taken from the register elements with their MSB positioned
at bit 14. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element should be 0.

This instruction could be used to pack pixel chroma (UV) values, as required for MPEG
compression.

Operation:

Exceptions:

None

SHVfrom Vector Register
Store Packed Half

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SHV

45

element

610 711

7

SHV
0 1 0 0 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...7

Addr = Addr + i * 2
data VR[vt][i*2]14...7
StoreDMEM (BYTE, data, Addr11...0)

endfor

Revision 1.0

211

Format:

sll rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits.

The result is placed in register rd.

Operation:

Exceptions:

None

SLLShift Left Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0

SLL

0
0 0 0 0 0

T: GPR[rd] GPR[rt]31– sa...0 || 0sa

212

Format:

sllv rd, rt, rs

Description:

The contents of general register rt are shifted left the number of bits specified by the low-order five
bits contained in general register rs, inserting zeros into the low-order bits.

The result is placed in register rd.

Operation:

Exceptions:

None

SLLV Shift Left Logical Variable

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0

SLLV

rs

T: s GP[rs]4...0

GPR[rd] GPR[rt](31–s)...0 || 0s

Revision 1.0

213

Format:

slt rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs.
Considering both quantities as signed integers, if the contents of general register rs are less than the
contents of general register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

Operation:

Exceptions:

None

SLTSet On Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0

SLT

T: if GPR[rs] < GPR[rt] then
GPR[rd] 031 || 1

else
GPR[rd] 032

endif

214

Format:

slti rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs.
Considering both quantities as signed integers, if rs is less than the sign-extended immediate, the
result is set to one; otherwise the result is set to zero.

The result is placed into general register rt.

Since the RSP does not signal an overflow exception for SLTI, this command behaves identically to
SLTIU.

Operation:

Exceptions:

None

SLTI Set On Less Than Immediate

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16

0 0 1 0 1 0

SLTI

T: if GPR[rs] < (immediate15)16 || immediate15...0 then
GPR[rd] 031 || 1

else
GPR[rd] 032

endif

Revision 1.0

215

Format:

sltiu rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs.
Considering both quantities as unsigned integers, if rs is less than the sign-extended immediate, the
result is set to one; otherwise the result is set to zero.

The result is placed into general register rt.

Since the RSP does not signal an overflow exception for SLTI, this command behaves identically to
SLTI.

Operation:

Exceptions:

None

SLTIUImmediate Unsigned
Set On Less Than

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16

0 0 1 0 1 1

SLTIU

T: if (0 || GPR[rs]) < (immediate15)16 || immediate15...0 then
GPR[rd] 031 || 1

else
GPR[rd] 032

endif

216

Format:

sltu rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs.
Considering both quantities as unsigned integers, if the contents of general register rs are less than
the contents of general register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

Operation:

Exceptions:

None

SLTU Set On Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

SLTU

T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] 031 || 1

else
GPR[rd] 032

endif

Revision 1.0

217

Format:

slv vt[element], offset(base)

Description:

This instruction stores a long word (32 bits) from vector register vt into DMEM.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

SLVfrom Vector Register
Store Long

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SLV

45

element

610 711

7

SLV
0 0 0 1 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data VR[vt][element]31...0
StoreDMEM (WORD, data, Addr11...0)

218

Format:

spv vt[0], offset(base)

Description:

This instruction stores the upper byte from each of eight VU regsiter elements, to consecutive bytes
of a 128-bit word in DMEM. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element should be 0.

Operation:

Exceptions:

None

SPVfrom Vector Register
Store Packed Bytes

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SPV

45

element

610 711

7

SPV
0 0 1 1 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...7

Addr = Addr + i
data VR[vt][i*2]15...8
StoreDMEM (BYTE, data, Addr11...0)

endfor

Revision 1.0

219

Format:

sqv vt[0], offset(base)

Description:

This instruction stores a vector register vt starting at byte element 0 up to byte (address & 15), to a
byte-aligned quad word (128 bits) at the effective address of DMEM up to the 128 bit boundary,
that is (address) to ((address & ~15) + 15) . The remaining portion of the quad word can be stored
with the appropriate SRV instruction. See Figure 3-2, “Long, Quad, and Rest Loads and Stores,” on
page 51.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element should be 0.

Operation:

Exceptions:

None

SQVfrom Vector Register
Store Quad

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SQV

45

element

610 711

7

SQV
0 0 1 0 0

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data VR[vt][0]127...0
StoreDMEM (QUADWORD, data, Addr11...0)

220

Format:

sra rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits.

The result is placed in register rd.

Operation:

 Exceptions:

None

SRAShift Right Arithmetic

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SRA

T: GPR[rd] (GPR[rt]31)sa || GPR[rt] 31...sa

Revision 1.0

221

Format:

srav rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order
five bits of general register rs, sign-extending the high-order bits.

The result is placed in register rd.

Operation:

Exceptions:

None

SRAV Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

SRAVArithmetic Variable

T: s GPR[rs]4...0

GPR[rd] (GPR[rt]31)s || GPR[rt]31...s

222

Format:

srl rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order
bits.

The result is placed in register rd.

Operation:

Exceptions:

None

SRLShift Right Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0

SRL

0
0 0 0 0 0

T: GPR[rd] 0 sa || GPR[rt]31...sa

Revision 1.0

223

Format:

srlv rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order
five bits of general register rs, inserting zeros into the high-order bits.

The result is placed in register rd.

Operation:

Exceptions:

None

SRLV Shift Right Logical Variable

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

SRLV

T: s GPR[rs]4...0

GPR[rd] 0s || GPR[rt]31...s

224

Format:

srv vt[e], offset(base)

Description:

This instruction stores a vector register from byte element (16 - (address & 15)) to 15, to the 128 bit
aligned boundary up to the byte address, that is (address & ~15) to (address - 1). See Figure 3-2,
“Long, Quad, and Rest Loads and Stores,” on page 51. A SRV with a byte address of zero writes no
bytes.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier e is the byte element of the vector register, not the ordinal
element count, as in VU computational instructions.

Operation:

Exceptions:

None

SRVfrom Vector Register
Store Quad (Rest)

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SRV

45

element

610 711

7

SRV
0 0 1 0 1

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data VR[vt][0]127...0
StoreDMEM (QUADWORD, data, Addr11...0)

Revision 1.0

225

Format:

ssv vt[element], offset(base)

Description:

This instruction stores a half word (16 bits) from a vector register vt into DMEM.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

Exceptions:

None

SSVfrom Vector Register
Store Short

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SSV

45

element

610 711

7

SSV
0 0 0 0 1

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data VR[vt][element]15...0
StoreDMEM (HALFWORD, data, Addr11...0)

226

Format:

stv vt[element], offset(base)

Description:

This instruction gathers a diagonal vector of shorts from a group of eight VU registers, writing to
an aligned 128 bit memory word. The VU register number of each slice is computed as
(VT & 0x18) | ((Slice + (Element >> 1)) & 0x7) , which is to say that vt specifies the beginning of an
8 register group.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

 See “Transpose” on page 54.

Exceptions:

None

STVfrom Vector Register
Store Transpose

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

STV

45

element

610 711

7

STV
0 1 0 1 1

25

offset

Revision 1.0

227

Format:

sub rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a
result. The result is placed into general register rd.

Since the RSP does not signal an overflow exception for SUB, this command behaves identically to
SUBU.

Operation:

Exceptions:

None

SUB SUBSubtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

T: GPR[rd] GPR[rs] – GPR[rt]

228

Format:

subu rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a
result.

The result is placed into general register rd.

Since the RSP does not signal an overflow exception for SUB, this command behaves identically to
SUBU.

Operation:

Exceptions:

None

SUBU Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

SUBU

T: GPR[rd] GPR[rs] – GPR[rt]

Revision 1.0

229

Format:

suv vt[0], offset(base)

Description:

This instruction stores eight consecutive bytes in DMEM, extracted from the upper bytes of eight
VU register elements. The bytes are extracted with their MSB positioned at bit 14 from the register
element. See Figure 3-3, “Packed Loads and Stores,” on page 53.

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element should be 0.

This instruction could be used to pack 8-bit pixel data such as RGBA or luma (Y) values.

Operation:

Exceptions:

None

SUVfrom Vector Register
Store Unsigned Packed

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SUV

45

element

610 711

7

SUV
0 0 1 1 1

25

offset

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
for i in 0...7

Addr = Addr + i
data7...0 VR[vt][i*2]14...7
StoreDMEM (BYTE, data, Addr11...0)

endfor

230

Format:

sw rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a
DMEM address. The contents of general register rt are stored at the DMEM location specified by
the DMEM address.

Since DMEM is only 4K bytes, only the lower 12 bits of the effective address are used.

Operation:

Exceptions:

None

SWStore Word

31 2526 2021 1516 0

SW base rt offset

6 5 5 16

1 0 1 0 1 1

SW

T:
Addr ((offset15)16 || offset15...0) + GPR[base]
data GPR31...0
StoreDMEM (WORD, data, Addr11...0)

Revision 1.0

231

Format:

swv vt[element], offset(base)

Description:

This instruction gathers a diagonal vector of shorts from a group of eight VU registers, writing to
an aligned 128 bit memory word. The VU register number of each slice is computed as
(VT & 0x18) | ((Slice + (Element >> 1)) & 0x7) , which is to say that vt specifies the beginning of an
8 register group. SWV performs a circular shift of the 8 shorts by (element >> 1), which is equivalent
to:

dest_short[Slice] = source_short[((Slice + (Element >> 1)) & 0x7)]

The effective address is computed by adding the offset to the contents of the base register (a SU
GPR).

Note: The element specifier element is the byte element of the vector register, not the
ordinal element count, as in VU computational instructions.

Operation:

 See “Transpose” on page 54.

Exceptions:

None

SWVfrom Vector Register
Store Wrapped

31 26 2021 1516 0

SWC2 base vt

6 5 5
1 1 1 0 1 0

SWV

45

element

610 711

7

SWV
0 0 1 1 1

25

offset

Format:

vabs vd, vs, vt
vabs vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are conditionally negated on an element-by-element basis
by the sign of the elements of vector register vs and placed into vector register vd. If vs is equal to
0, vs is placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VABSof Short Elements
Vector Absolute Value

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VABS

1

1 55

vdvs

510 611

6

VABS
0 1 0 0 1 1

24
232

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif

if (VR[vs][i*2]15...0 < 0) then
result15...0 -(VR[vt][j*2]15...0)

elseif (VR[vs][i*2]15...0 = 015...0) then
result15...0 015...0

elseif (VR[vs][i*2]15...0 > 0) then
result15...0 VR[vt][j*2]15...0

endif
VR[vd][i*2]15...0 result15...0

ACC[i]15...0 result15...0

endfor
233

Format:

vadd vd, vs, vt
vadd vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are added on an element-by-element basis to the elements
of vector register vs. The vector control register VCO is used as carry in; and VCO is cleared.

The results are clamped to 16 bit signed values and placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VADDof Short Elements
Vector Add

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VADD

1

1 55

vdvs

510 611

6

VADD
0 1 0 0 0 0

24
234

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 + VR[vt][j*2]15...0 + VCOi
VR[vd][i*2]15...0 Clamp_Signed(result15...0)
ACC[i]15...0 result15...0

endfor
VCO15...0 <-- 016
235

Format:

vaddc vd, vs, vt
vaddc vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are added on an element-by-element basis to the elements
of vector register vs. The vector control register VCO is used as carry out. The results are not
clamped.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VADDCWith Carry
Vector Add Short Elements

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VADDC

1

1 55

vdvs

510 611

6

VADDC
0 1 0 1 0 0

24
236

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result16...0 VR[vs][i*2]15...0 + VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

VCOi+8 0
VCOi result16

endfor
237

Format:

vand vd, vs, vt
vand vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are AND’d on an element-by-element basis with the
elements of vector register vs.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VANDof Short Elements
Vector AND

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VAND

1

1 55

vdvs

510 611

6

VAND
1 0 1 0 0 0

24
238

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 and VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0
endfor
239

Format:

vch vd, vs, vt
vch vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are compared and selected on an element-by-element basis
with the elements of vector register vs. The clip test selects are an optimization for comparing the
elements in vs to a scalar element in vt, or the vector vt, such as comparing w to xyz or clamping a
vector to a +/- range. VCH performs

(-VT >= VS <= VT)

generating 16 bits in VCC and updating VCO and VCE with equal and sign values.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VCHTest High
Vector Select Clip

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VCH

1

1 55

vdvs

510 611

6

VCH
1 0 0 1 0 1

24
240

Revision 1.0
Operation:

T:
VCC15...0 016

VCO15...0 016

VCE7...0 08

for i in 0...7
if (e = 0000) then /* vector operand */

 j i
elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */

j (e3...0 & 0001) + (i & 1110)
elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */

j (e3...0 & 0011) + (i & 1100)
elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */

j (e3...0 & 0111)
endif
sign ((VR[vs][i*2]15...0 xor VR[vt][j*2]15...0) < 0)
if (sign) then

ge (VR[vt][j*2]15...0) < 0)
le (VR[vs][i*2]15...0 + VR[vt][j*2]15...0) <= 0)
vce (VR[vs][i*2]15...0 + VR[vt][j*2]15...0) = -1)
eq (VR[vs][i*2]15...0 + VR[vt][j*2]15...0) = 0)
di15...0 (le) ? -(VR[vt][j*2]15...0) : VR[vs][i*2]15...0

ACC[i]15...0 di15...0

else
le (VR[vt][j*2]15...0) < 0)
ge (VR[vs][i*2]15...0 - VR[vt][j*2]15...0) >= 0)
vce 0
eq (VR[vs][i*2]15...0 - VR[vt][j*2]15...0) = 0)
di15...0 (ge) ? VR[vt][j*2]15...0 : VR[vs][i*2]15...0

ACC[i]15...0 di15...0

endif
241

Exceptions:

None

VR[vd][i*2]15...0 di15...0
neq ~eq and 1
VCC15...0 VCC15...0 or (ge << (i + 8)) or (le << i)
VCO15...0 VCO15...0 or (neq << (i + 8)) or (sign << i)
VCE7...0 VCE7...0 or (vce << (i + 8))

endfor
242

Revision 1.0
Format:

vcl vd, vs, vt
vcl vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are compared and selected on an element-by-element basis
with the elements of vector register vs. The clip test selects are an optimization for comparing the
elements in vs to a scalar element in vt, or the vector vt, such as comparing w to xyz or clamping a
vector to a +/- range. VCL performs

(-VT >= VS <= VT)

generating 16 bits in VCC and updating VCO and VCE with equal and sign values.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VCLTest Low
Vector Select Clip

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VCL

1

1 55

vdvs

510 611

6

VCL
1 0 0 1 0 0

24
243

Operation:

T:
for i in 0...7

if (e = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
le (VCC15...0 >> i) and 1
ge (VCC15...0 >> (i+8)) and 1
vce (VCE7...0 >> i) and 1
eq ~(VCO15...0 >> (i+8)) and 1
sign (VCO15...0 >> i) and 1
if (sign) then

di15...0 VR[vs][i*2]15...0 + VR[vt][j*2]15...0

carrry (di15...0 > 116)
if (eq) then

le (not vce and (((di15...0 and 116) = 0) and not carry)) or
(vce and (((di15...0 and 116) = 0) or not carry))

endif
di15...0 (le) ? -(VR[vt][j*2]15...0) : VR[vs][i*2]15...0

ACC[i]15...0 di15...0

VCEi 0
else
244

Revision 1.0
Exceptions:

None

di15...0 VR[vs][i*2]15...0 - VR[vt][j*2]15...0

if (eq) then
ge (di15...0 >= 0)

endif
di15...0 (ge) ? VR[vt][j*2]15...0 : VR[vs][i*2]15...0

ACC[i]15...0 di15...0

endif
VR[vd][i*2]15...0 di15...0

VCC15...0 VCC15...0 and (~(1 || 07 || 1) << i) or (ge << (i+8)) or (le << i)
endfor
VCO15...0 0
VCE7...0 0
245

Format:

vcr vd, vs, vt
vcr vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are compared and selected on an element-by-element basis
with the elements of vector register vs. The clip test selects are an optimization for comparing the
elements in vs to a scalar element in vt, or the vector vt, such as comparing w to xyz or clamping a
vector to a +/- range. VCR performs

(-VT >= VS <= VT)

generating 16 bits in VCC and updating VCO and VCE with equal and sign values. It interprets vt
as a 1’s complement number, useful for clamping to a power of 2. VCR is a single-precision
instruction, and ignores VCO for input.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VCRTest Low
Vector Select Crimp

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VCR

1

1 55

vdvs

510 611

6

VCR
1 0 0 1 1 0

24
246

Revision 1.0
Operation:

T:
VCC15...0 016

for i in 0...7
if (e = 0000) then /* vector operand */

 j i
elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */

j (e3...0 & 0001) + (i & 1110)
elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */

j (e3...0 & 0011) + (i & 1100)
elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */

j (e3...0 & 0111)
endif
sign ((VR[vs][i*2]15...0 xor VR[vt][j*2]15...0) < 0)
if (sign) then

ge (VR[vt][j*2]15...0) < 0)
le (VR[vs][i*2]15...0 + VR[vt][j*2]15...0 + 1) <= 0)
di15...0 (le) ? ~(VR[vt][j*2]15...0) : VR[vs][i*2]15...0

ACC[i]15...0 di15...0

else
le (VR[vt][j*2]15...0) < 0)
ge (VR[vs][i*2]15...0 - VR[vt][j*2]15...0) >= 0)
di15...0 (ge) ? VR[vt][j*2]15...0 : VR[vs][i*2]15...0

ACC[i]15...0 di15...0

endif
VR[vd][i*2]15...0 di15...0

VCC15...0 VCC15...0 or (ge << (i+8)) or (le << i)
endfor
VCO15...0 0
VCE7...0 0
247

Exceptions:

None
248

Revision 1.0
Format:

veq vd, vs, vt
veq vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are compared and selected on an element-by-element basis
with the elements of vector register vs. VCO and VCE are used as input, VCO and VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is equal).

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VEQEqual
Vector Select

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VEQ

1

1 55

vdvs

510 611

6

VEQ
1 0 0 0 0 1

24
249

Operation:

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif

if ((VR[vs][i*2]15...0 = VR[vt][j*2]15...0) and VCEi) then
VCCi 1

else
VCCi 0

endif

if (VCCi) then
result15...0 VR[vs][i*2]15...0

else
result15...0 VR[vt][j*2]15...0

endif
ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

VCOi 0
VCOi+8 0
VCEi 0

endfor
250

Revision 1.0
Exceptions:

None
251

Format:

vge vd, vs, vt
vge vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are compared and selected on an element-by-element basis
with the elements of vector register vs. VCO and VCE are used as input, VCO and VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is greater than or
equal).

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VGEGreater Than or Equal
Vector Select

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VGE

1

1 55

vdvs

510 611

6

VGE
1 0 0 0 1 1

24
252

Revision 1.0
Operation:

T:
VCC 0
for i in 0...7

if (e = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif

if (VR[vs][i*2]15...0 > VR[vt][j*2]15...0) then
VCCi 1

elseif ((VR[vs][i*2]15...0 = VR[vt][j*2]15...0) and (~VCOi | VCEi)) then
VCCi 1

else
VCCi 0

endif
if (VCCi) then

result15...0 VR[vs][i*2]15...0

else
result15...0 VR[vt][j*2]15...0

endif
ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

VCOi 0
VCOi+8 0
VCEi 0

endfor
253

Exceptions:

None
254

Revision 1.0
Format:

vlt vd, vs, vt
vlt vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are compared and selected on an element-by-element basis
with the elements of vector register vs. VCO and VCE are used as input, VCO and VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is less than).

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VLTLess Than
Vector Select

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VLT

1

1 55

vdvs

510 611

6

VLT
1 0 0 0 0 0

24
255

Operation:

T:
VCC 0
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif

if (VR[vs][i*2]15...0 < VR[vt][j*2]15...0) then
VCCi 1

elseif ((VR[vs][i*2]15...0 = VR[vt][j*2]15...0) and VCOi and ~VCEi) then
VCCi 1

else
VCCi 0

endif
if (VCCi) then

result15...0 VR[vs][i*2]15...0

else
result15...0 VR[vt][j*2]15...0

endif

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

endfor
VCO 0
VCE 0
256

Revision 1.0
Exceptions:

None
257

Format:

vmacf vd, vs, vt
vmacf vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 47...16 of the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMACFof Signed Fractions
Vector Multiply-Accumulate

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMACF

1

1 55

vdvs

510 611

6

VMACF
0 0 1 0 0 0

24
258

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC47...16 ACC47...16 + (product30...0 || 0)
VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)

endfor
259

Format:

vmacq vd, vs, vt
vmacq vd, vs, vt[e]

Description:

This instruction ignores vs and vt inputs, and performs oddification1 of the accumulator by adding
(32 << 16) if the accumulator is negative and ACC21 is zero; adding (-32<<16) if the accumulator is
positive and ACC21 is zero; or adding zero if ACC47...21 are zero or ACC21 is 1.

Bits 32...17 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

1 Oddification is performed as described in the MPEG1 specification, ISO/IEC 11172-2.

VMACQOddification
Vector Accumulator

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMACQ

1

1 55

vdvs

510 611

6

VMACQ
0 0 1 0 1 1

24
260

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
if (ACC47...0 < 0 and not ACC21) then

ACC47...0 ACC47...0 + (026 || 1 || 021)
else if (ACC47...0 > 0 and not ACC21) then

ACC47...0 ACC47...0 + (126 || 1 || 021)
else

ACC47...0 ACC47...0 + 048

endif
VR[vd][i*2]15...0 Clamp_Signed(ACC32...17)

endfor
261

Format:

vmacu vd, vs, vt
vmacu vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 47...16 of the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit unsigned values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMACUof Unsigned Fractions
Vector Multiply-Accumulate

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMACU

1

1 55

vdvs

510 611

6

VMACU
0 0 1 0 0 1

24
262

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC47...16 ACC47...16 + (product30...0 || 0)
VR[vd][i*2]15...0 Clamp_Unsigned(ACC31...16)

endfor
263

Format:

vmadh vd, vs, vt
vmadh vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, shifted up by 16, and added to bits 31...0 of the accumulator. This
instruction is designed for the high partial product, multiplying an integer (vs) times an integer
(vt).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMADHof High Partial Products
Vector Multiply-Accumulate

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMADH

1

1 55

vdvs

510 611

6

VMADH
0 0 1 1 1 1

24
264

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 ACC31...0 + (product31...16 || 016)
VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)

endfor
265

Format:

vmadl vd, vs, vt
vmadl vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, shifted down by 16, and added to bits 31...0 of the accumulator. This
instruction is designed for the low partial product, multiplying a fraction (vs) times a fraction (vt).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMADLof Low Partial Products
Vector Multiply-Accumulate

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMADL

1

1 55

vdvs

510 611

6

VMADL
0 0 1 1 0 0

24
266

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 ACC31...0 + product31...16

VR[vd][i*2]15...0 Clamp_Signed(ACC15...0)
endfor
267

Format:

vmadm vd, vs, vt
vmadm vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 31...0 of the accumulator. This instruction is
designed for the mid partial product, multiplying an integer (vs) times a fraction (vt).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMADMof Mid Partial Products
Vector Multiply-Accumulate

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMADM

1

1 55

vdvs

510 611

6

VMADM
0 0 1 1 0 1

24
268

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 ACC31...0 + product31...0

VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)
endfor
269

Format:

vmadn vd, vs, vt
vmadn vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and added to bits 31...0 of the accumulator. This instruction is
designed for the mid partial product, multiplying a fraction (vs) times an integer (vt).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMADNof Mid Partial Products
Vector Multiply-Accumulate

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMADN

1

1 55

vdvs

510 611

6

VMADN
0 0 1 1 1 0

24
270

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 ACC31...0 + product31...0

VR[vd][i*2]15...0 Clamp_Signed(ACC15...0)
endfor
271

272

Format:

vmov vd[de], vt[e]

Description:

The scalar 16-bit element e of vector register vt is moved to the scalar 16-bit element de of vector
register vd.

Operation:

Exceptions:

None

VMOVScalar Move
Vector Element

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMOV

1

1 55

vdde

510 611

6

VMOV
1 1 0 0 1 1

24

T:
VR[vd][de]15...0 VR[vt][e]15...0

ACC15...0 VR[vt][e]15...0

Revision 1.0
Format:

vmrg vd, vs, vt
vmrg vd, vs, vt[e]

Description:

This instruction selects, on an element by element basis, an element from vs or vt, based on the
value of VCC for that element. The values of VCC, VCO, and VCE remain unchanged.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMRGMerge
Vector Select

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMRG

1

1 55

vdvs

510 611

6

VMRG
1 0 0 1 1 1

24
273

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
if (VCCi) then

result15...0 VR[vs][i*2]15...0

else
result15...0 VR[vt][j*2]15...0

endif

VR[vd][i*2]15...0 result15...0

ACC15...0 result15...0
endfor
274

Revision 1.0
Format:

vmudh vd, vs, vt
vmudh vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, shifted up by 16, and loaded into the accumulator. This instruction
is designed for the high partial product, multiplying an integer (vs) times an integer (vt).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMUDHof High Parital Products
Vector Multiply

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMUDH

1

1 55

vdvs

510 611

6

VMUDH
0 0 0 1 1 1

24
275

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 product31...16 || 0
16

VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)
endfor
276

Revision 1.0
Format:

vmudl vd, vs, vt
vmudl vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, shifted down by 16, and loaded into the accumulator. This
instruction is designed for the low partial product, multiplying a fraction (vs) times a fraction (vt).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMUDLof Low Parital Products
Vector Multiply

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMUDL

1

1 55

vdvs

510 611

6

VMUDL
0 0 0 1 0 0

24
277

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 product31
16 || product31...16

VR[vd][i*2]15...0 Clamp_Signed(ACC15...0)
endfor
278

Revision 1.0
Format:

vmudm vd, vs, vt
vmudm vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator. This instruction is designed for the
mid partial product, multiplying an integer (vs) times a fraction (vt).

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMUDMof Mid Parital Products
Vector Multiply

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMUDM

1

1 55

vdvs

510 611

6

VMUDM
0 0 0 1 0 1

24
279

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 product31...0

VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)
endfor
280

Revision 1.0
Format:

vmudn vd, vs, vt
vmudn vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator. This instruction is designed for the
mid partial product, multiplying a fraction (vs) times an integer (vt).

Bits 15...0 of the accumulator are clamped to 16 bit signed values and placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMUDNof Mid Parital Products
Vector Multiply

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMUDN

1

1 55

vdvs

510 611

6

VMUDN
0 0 0 1 1 0

24
281

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC31...0 product31...0

VR[vd][i*2]15...0 Clamp_Signed(ACC15...0)
endfor
282

Revision 1.0
Format:

vmulf vd, vs, vt
vmulf vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit signed values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMULFof Signed Fractions
Vector Multiply

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMULF

1

1 55

vdvs

510 611

6

VMULF
0 0 0 0 0 0

24
283

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC47...16 product30...0 || 0
ACC47...0 ACC47...0 + (1 || 015)
VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)

endfor
284

Revision 1.0
Format:

vmulq vd, vs, vt
vmulq vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator.

This instruction is specifically designed to support MPEG inverse quantization. The accumulator is
rounded if the product is negative, otherwise zero is added.

Bits 32...17 of the accumulator are clamped to 16 bit signed values and AND’d with 0xFFF0
(producing a result from -2048 to 2047 aligned to the short MSB), writing the results into vector
register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMULQMPEG Quantization
Vector Multiply

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMULQ

1

1 55

vdvs

510 611

6

VMULQ
0 0 0 0 1 1

24
285

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

if (product31...0 < 0) then
ACC47...16 product15...0 + (010 || 1 || 05)

else
ACC47...16 product15...0

endif
VR[vd][i*2]15...0 (Clamp_Signed(ACC32...17) and (112 || 04))

endfor
286

Revision 1.0
Format:

vmulu vd, vs, vt
vmulu vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are multiplied on an element-by-element basis to the
elements of vector register vs, and loaded into the accumulator.

Bits 31...16 of the accumulator are clamped to 16 bit unsigned values and placed into vector register
vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VMULUof Unsigned Fractions
Vector Multiply

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VMULU

1

1 55

vdvs

510 611

6

VMULU
0 0 0 0 0 1

24
287

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
product31...0 VR[vs][i*2]15...0 * VR[vt][j*2]15...0

ACC47...16 product30...0 || 0
ACC47...0 ACC47...0 + (1 || 015)
VR[vd][i*2]15...0 Clamp_Unsigned(ACC31...16)

endfor
288

Revision 1.0
Format:

vnand vd, vs, vt
vnand vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are NAND’d on an element-by-element basis with the
elements of vector register vs.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VNANDof Short Elements
Vector NAND

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VNAND

1

1 55

vdvs

510 611

6

VNAND
1 0 1 0 0 1

24
289

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 nand VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0
endfor
290

Revision 1.0
Format:

vne vd, vs, vt
vne vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are compared and selected on an element-by-element basis
with the elements of vector register vs. VCO and VCE are used as input, VCO and VCE are cleared on
output, and VCC is set with the results of the comparison (the element which is not equal).

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VNENot Equal
Vector Select

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VNE

1

1 55

vdvs

510 611

6

VNE
1 0 0 0 1 0

24
291

Operation:
T:

VCC 0
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
if (VR[vs][i*2]15...0 < VR[vt][j*2]15...0) then

VCCi 1
elseif (VR[vs][i*2]15...0 > VR[vt][j*2]15...0) then

VCCi 1
elseif ((VR[vs][i*2]15...0 = VR[vt][j*2]15...0) and ~VCEi) then

VCCi 1
else

VCCi 0
endif
if (VCCi) then

result15...0 VR[vs][i*2]15...0

else
result15...0 VR[vt][j*2]15...0

endif
VR[vd][i*2]15...0 result15...0

ACC[i]15...0 result15...0

VCOi 0
VCEi 0

endfor
292

Revision 1.0
Exceptions:

None
293

294

Format:

vnop

Description:

This instruction does nothing; it modifies no registers and changes no internal RSP state.

It is useful for program instruction padding or insertion into branch delay slots (when no useful
work can be done).

The Operation:

Exceptions:

None

VNOPNull Instruction
Vector

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VNOP

1

1 55

vdvs

510 611

6

VNOP
1 1 0 1 1 1

24

T: nothing happens

Revision 1.0
Format:

vnor vd, vs, vt
vnor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are NOR’d on an element-by-element basis with the
elements of vector register vs.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VNORof Short Elements
Vector NOR

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VNOR

1

1 55

vdvs

510 611

6

VNOR
1 0 1 0 1 1

24
295

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 nor VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

endfor
296

Revision 1.0
Format:

vnxor vd, vs, vt
vnxor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are NXOR’d on an element-by-element basis with the
elements of vector register vs.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VNXORof Short Elements
Vector NXOR

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VNXOR

1

1 55

vdvs

510 611

6

VNXOR
1 0 1 1 0 1

24
297

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 nxor VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0
endfor
298

Revision 1.0
Format:

vor vd, vs, vt
vor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are OR’d on an element-by-element basis with the elements
of vector register vs.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VORof Short Elements
Vector OR

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VOR

1

1 55

vdvs

510 611

6

VNOR
1 0 1 0 1 0

24
299

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 or VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

endfor
300

Revision 1.0
Format:

vrcp vd[de], vt[e]

Description:

The 32-bit reciprocal of the scalar 16-bit element e of vector register vt is calculated and the lower
16 bits are stored in the scalar 16-bit element de of vector register vd.

Operation:

VRCPReciprocal (Single Precision)
Vector Element Scalar

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRCP

1

1 55

vdde

510 611

6

VRCP
1 1 0 0 0 0

24

T:
if (VR[vt][e]15...0 < 0) then

DivIn31...0 016 || -VR[vt][e]15...0

else
DivIn31...0 016 || VR[vt][e]15...0

endif
lshift 0
i 0
while (i < 32 and ~found)

if (DivIni = 1)
lshift 0
found 1

endif
i i + 1

endwhile
301

Exceptions:

None

if (DivIn31...0 = 032) then
lshift 16

endif

addr15...0 DivIn(31-lshift)...(31-lshift-9)

romData15...0 rcpRom[addr15...0]
result31...0 0 || 1 || romData15...0 || 014

rshift ~lshift and 15

result31...0 0rshift || result31...(32-rshift)

if (VR[vt][e]15...0 < 0) then
result31...0 ~result31...0

endif
if (VR[vt][e]15...0 = 0) then

result31...0 0 || 131

DivOut31...0 result31...0 // internal register used by vrcph
for i in 0...7

ACC[i]15...0 VR[vt][e]15...0

endfor
VR[vd][de*2]15...0 DivOut15...0
302

Revision 1.0

303

Format:

vrcph vd[de], vt[e]

Description:

The upper 16 bits of the reciprocal previously calculated is stored in the scalar 16-bit element de of
vector register vd. The 16-bit element e of vector register vt is loaded as the upper 16 bits for a
pending double-precision reciprocal operation.

Operation:

Exceptions:

None

VRCPHReciprocal (Double Prec. High)
Vector Element Scalar

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRCPH

1

1 55

vdde

510 611

6

VRCPH
1 1 0 0 1 0

24

T:
DivIn31...0 VR[vt][e]15...0 || 016

for i in 0...7
ACC[i]15...0 VR[vt][e]15...0

endfor
VR[vd][de*2]15...0 DivOut31...16 // internal register set by vrcp/vrcpl

Format:

vrcpl vd[de], vt[e]

Description:

The 16-bit element e of vector register vt is used as the lower 16 bits of a double-precision reciprocal
calculation (combined with data previously loaded by vrcph). The 32-bit reciprocal is calculated
and the lower 16-bits are stored in the scalar 16-bit element de of vector register vd.

Operation:

VRCPLReciprocal (Double Prec. Low)
Vector Element Scalar

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRCPL

1

1 55

vdde

510 611

6

VRCPL
1 1 0 0 0 1

24

T:
DivIn31...0 DivIn31...16 || VR[vt][e]15...0

lshift 0
i 0
while (i < 32 and ~found)

if (DivIni = 1)
lshift 0
found 1

endif
i i + 1

endwhile

if (DivIn31...0 = 032) then
lshift 0

endif
304

Revision 1.0
Exceptions:

None

addr15...0 DivIn(31-lshift)...(31-lshift-9)

romData15...0 rcpRom[addr15...0]
result31...0 0 || 1 || romData15...0 || 014

rshift ~lshift and 15

result31...0 0rshift || result31...(32-rshift)

if (VR[vt][e]15...0 < 0) then
result31...0 ~result31...0

endif
if (VR[vt][e]15...0 = 0) then

result31...0 0 || 131

DivOut31...0 result31...0 // internal register used by vrcph
for i in 0...7

ACC[i]15...0 VR[vt][e]15...0

endfor
VR[vd][de*2]15...0 DivOut15...0
305

Format:

vrndn vd, vs, vt
vrndn vd, vs, vt[e]

Description:

This instruction is specifically designed to support MPEG DCT rounding.

The vector register vt is shifted left 16 bits if the vs field is 1 (not the contents of vs, but the vs
instruction field bits) and conditionally added to the accumulator. If the accumulator is negative,
vt is added, otherwise zero is added.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VRNDNDCT Rounding (Negative)
Vector Accumulator

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRNDN

1

1 55

vdvs

510 611

6

VRNDN
0 0 1 0 1 0

24
306

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
if (vs and 1) then

product31...0 VR[vt][i*2]15...0 || 016

else
product31...0 VR[vt][i*2]15

16 || VR[vt][i*2]15...0

endif
if (ACC47...0 < 0) then

ACC47...0 ACC47...0 + (product31
16 || product31...0)

else
ACC47...0 ACC47...0 + 048

endif
VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)

endfor
307

Format:

vrndp vd, vs, vt
vrndp vd, vs, vt[e]

Description:

This instruction is specifically designed to support MPEG DCT rounding.

The vector register vt is shifted left 16 bits if the vs field is 1 (not the contents of vs, but the vs
instruction field bits) and conditionally added to the accumulator. If the accumulator is positive, vt
is added, otherwise zero is added.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VRNDPDCT Rounding (Positive)
Vector Accumulator

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRNDP

1

1 55

vdvs

510 611

6

VRNDP
0 0 0 0 1 0

24
308

Revision 1.0
Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
if (vs and 1) then

product31...0 VR[vt][i*2]15...0 || 016

else
product31...0 VR[vt][i*2]15

16 || VR[vt][i*2]15...0

endif
if (ACC47...0 >= 0) then

ACC47...0 ACC47...0 + (product31
16 || product31...0)

else
ACC47...0 ACC47...0 + 048

endif
VR[vd][i*2]15...0 Clamp_Signed(ACC31...16)

endfor
309

Format:

vrsq vd[de], vt[e]

Description:

The 32-bit reciprocal of the square root of the scalar 16-bit element e of vector register vt is
calculated and the lower 16 bits are stored in the scalar 16-bit element de of vector register vd.

Operation:

VRSQSQRT Reciprocal
Vector Element Scalar

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRSQ

1

1 55

vdde

510 611

6

VRSQ
1 1 0 1 0 0

24

T:
if (VR[vt][e]15...0 < 0) then

DivIn31...0 016 || -VR[vt][e]15...0

else
DivIn31...0 016 || VR[vt][e]15...0

endif
lshift 0
i 0
while (i < 32 and ~found)

if (DivIni = 1)
lshift 0
found 1

endif
i i + 1

endwhile
310

Revision 1.0
Exceptions:

None

if (DivIn31...0 = 032) then
lshift 16

endif

addr15...0 DivIn(31-lshift)...(31-lshift-9)

addr15...0 (addr15...0 or (06 || 1 || 09)) and (06 || 19 || 0) or (lshift mod 2)

romData15...0 rsqRom[addr15...0]
result31...0 0 || 1 || romData15...0 || 014

rshift (~lshift and 15)/2
result31...0 0rshift || result31...(32-rshift)

if (VR[vt][e]15...0 < 0) then
result31...0 ~result31...0

endif
if (VR[vt][e]15...0 = 0) then

result31...0 0 || 131

DivOut31...0 result31...0 // internal register used by vrsqh
for i in 0...7

ACC[i]15...0 VR[vt][e]15...0

endfor
VR[vd][de*2]15...0 DivOut15...0
311

312

Format:

vrsqh vd[de], vt[e]

Description:

The upper 16 bits of the reciprocal of the square root previously calculated is stored in the scalar
16-bit element de of vector register vd. The 16-bit element e of vector register vt is loaded as the
upper 16 bits for a pending double-precision reciprocal of a square root operation.

Operation:

Exceptions:

None

VRSQHReciprocal (Double Prec. High)
Vector Element Scalar SQRT

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRSQH

1

1 55

vdde

510 611

6

VRSQH
1 1 0 1 1 0

24

T:
DivIn31...0 VR[vt][e]15...0 || 016

for i in 0...7
ACC[i]15...0 VR[vt][e]15...0

endfor
VR[vd][de*2]15...0 DivOut31...16 // internal register set by vrsql

Revision 1.0
Format:

vrsql vd[de], vt[e]

Description:

The 16-bit element e of vector register vt is used as the lower 16 bits of a double-precision square
root reciprocal calculation (combined with data previously loaded by vrsqh). The 32-bit square
root reciprocal is calculated and the lower 16-bits are stored in the scalar 16-bit element de of vector
register vd.

Operation:

VRSQLReciprocal (Double Prec. Low)
Vector Element Scalar SQRT

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VRSQL

1

1 55

vdde

510 611

6

VRSQL
1 1 0 1 0 1

24

T:
DivIn31...0 DivIn31...16 || VR[vt][e]15...0

lshift 0
i 0
while (i < 32 and ~found)

if (DivIni = 1)
lshift 0
found 1

endif
i i + 1

endwhile

if (DivIn31...0 = 032) then
lshift 0

endif
313

Exceptions:

None

addr15...0 DivIn(31-lshift)...(31-lshift-9)

addr15...0 (addr15...0 or (06 || 1 || 09)) and (06 || 19 || 0) or (lshift mod 2)

romData15...0 rsqRom[addr15...0]
result31...0 0 || 1 || romData15...0 || 014

rshift (~lshift and 15)/2
result31...0 0rshift || result31...(32-rshift)

if (VR[vt][e]15...0 < 0) then
result31...0 ~result31...0

endif
if (VR[vt][e]15...0 = 0) then

result31...0 0 || 131

DivOut31...0 result31...0 // internal register used by vrsqh
for i in 0...7

ACC[i]15...0 VR[vt][e]15...0

endfor
VR[vd][de*2]15...0 DivOut15...0
314

Revision 1.0
Format:

vsar vd, vs, vt[e]

Description:

The upper, middle, or low 16-bit portion of the accumulator elements are selected by e and read out
to the elements of vd.

The elements of vs are stored into the same portion of the accumulator.

Operation:

VSARRead (and Write)
Vector Accumulator

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VSAR

1

1 55

vdvs

510 611

6

VSAR
0 1 1 1 0 1

24

T:
for i in 0...7

if (e = 0) then
VR[vd][i*2]15...0 ACC[i]47...32

ACC[i]47...32 VR[vs][i*2]15...0

else if (e = 1) then
VR[vd][i*2]15...0 ACC[i]31...16

ACC[i]31...16 VR[vs][i*2]15...0

else if (e = 2) then
VR[vd][i*2]15...0 ACC[i]15...0

ACC[i]15...0 VR[vs][i*2]15...0

endif
endfor
315

Exceptions:

None
316

Revision 1.0
Format:

vsub vd, vs, vt
vsub vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are subtracted on an element-by-element basis from the
elements of vector register vs. The vector control register VCO is used as borrow in; and VCO is
cleared.

The results are clamped to 16 bit signed values and placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VSUBof Short Elements
Vector Subtraction

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VSUB

1

1 55

vdvs

510 611

6

VSUB
0 1 0 0 0 1

24
317

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 - VR[vt][j*2]15...0 - VCOi

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 Clamp_Signed(result15...0)
endfor
VCO15...0 016
318

Revision 1.0
Format:

vsubc vd, vs, vt
vsubc vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are subtracted on an element-by-element basis from the
elements of vector register vs. The vector control register VCO is used as borrow out. The results are
not clamped.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VSUBCElements With Carry
Vector Subtraction of Short

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VSUBC

1

1 55

vdvs

510 611

6

VSUBC
0 1 0 1 0 1

24
319

Operation:

Exceptions:

None

T:
VCO15...0 016

for i in 0...7
if (e3...0 = 0000) then /* vector operand */

 j i
elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */

j (e3...0 & 0001) + (i & 1110)
elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */

j (e3...0 & 0011) + (i & 1100)
elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */

j (e3...0 & 0111)
endif
result16...0 VR[vs][i*2]15...0 - VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

if (result16...0 < 0) then
VCOi 1
VCOi+8 1

else if (result16...0 > 0) then
VCOi 0
VCOi+8 1

else
VCOi 0
VCOi+8 0

endif
endfor
320

Revision 1.0
Format:

vxor vd, vs, vt
vxor vd, vs, vt[e]

Description:

The 16-bit elements of vector register vt are XOR’d on an element-by-element basis with the
elements of vector register vs.

The results are placed into vector register vd.

If an element specification e is present for vector register vt, the selected scalar element(s) of vt is
used as described below.

VXORof Short Elements
Vector XOR

31 2526 2021 1516 0

COP2 e vt

6 4 5

0 1 0 0 1 0

VXOR

1

1 55

vdvs

510 611

6

VXOR
1 0 1 1 0 0

24
321

Operation:

Exceptions:

None

T:
for i in 0...7

if (e3...0 = 0000) then /* vector operand */
 j i

elseif ((e3...0 & 1110) = 0010) then /* scalar quarter of vector */
j (e3...0 & 0001) + (i & 1110)

elseif ((e3...0 & 1100) = 0100) then /* scalar half of vector */
j (e3...0 & 0011) + (i & 1100)

elseif ((e3...0 & 1000) = 1000) then /* scalar whole of vector */
j (e3...0 & 0111)

endif
result15...0 VR[vs][i*2]15...0 xor VR[vt][j*2]15...0

ACC[i]15...0 result15...0

VR[vd][i*2]15...0 result15...0

endfor
322

Revision 1.0

323

Format:

xor rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise
logical exclusive OR operation.

The result is placed into general register rd.

Operation:

Exceptions:

None

XORExclusive Or

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0

XOR

T: GPR[rd]GPR[rs] xor GPR[rt]

324

Format:

xori rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a
bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

 Exceptions:

None

XORI Exclusive OR Immediate

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16

0 0 1 1 1 0

XORI

T: GPR[rt] GPR[rs] xor (016 || immediate)

Index
Symbols
- 108, 110, 122, 123
108
#define 20
#ifdef 20
#include 20
$ 112, 123
$0 32
$31 32, 174, 175
$at 123
$c 123
$c0 82, 83, 94
$c1 82, 83, 94
$c10 82, 89, 94
$c11 82, 90, 94
$c12 82, 92, 94
$c13 82, 92, 94
$c14 82, 93, 94
$c15 82, 93, 94
$c2 82, 83, 94
$c3 82, 83, 94
$c4 82, 85, 94
$c5 82, 88, 94
$c6 82, 88, 94
$c7 82, 88, 94
$c8 82, 88, 94
$c9 82, 89, 94
$ra 123
$s8 123
$sp 123
$v 123
$vcc 112, 123
$vce 112, 123
$vco 112, 123
% 108, 110, 122
& 108, 110, 122
(122
() 108
) 122
* 108, 110, 122
*/ 108
+ 108, 110, 122, 123
, 108

. 108

.align 119, 127, 136

.bound 119, 127, 136

.byte 111, 119

.dat 20, 126, 127

.data 109, 119, 136

.dbg 20

.dmax 119

.end 119

.ent 119

.half 111, 119, 136

.lst 20

.name 112, 119

.print 108, 119, 120, 127

.space 120

.sym 20

.symbol 107, 111, 120, 127

.text 109, 120

.unname 120

.word 111, 120, 136
/ 108, 110, 122
/* 108
: 108, 109
; 108
<< 108, 110, 122
>> 108, 110, 122
[] 108
^ 108, 110, 122
_ 107
__osSpDeviceBusy 143
__osSpGetStatus 144
__osSpRawReadIo 134, 143
__osSpRawStartDma 143
__osSpRawWriteIo 144
__osSpSetPc 144
__osSpSetStatus 144
_LANGUAGE_ASSEMBLY 20
| 108, 110, 122
~ 108, 110, 122

Numerics
0x04000000 95, 126
0x04001000 95, 145
325

Nintendo Ultra 64 RSP Programmer’s Guide
0x04040000 94
0x04040004 94
0x04040008 94
0x0404000c 94
0x04040010 94
0x04040014 94
0x04040018 94
0x0404001c 94
0x04080000 95
0x04100000 94
0x04100004 94
0x04100008 94
0x0410000c 94
0x04100010 94
0x04100014 94
0x04100018 94
0x0410001c 94
0x80 142
128-bit 26
48-bit 36
64-bit 43

A
ACC, pipeline stage 41
accumulator 26, 36, 57, 61
add 28, 121, 156, 159
addi 28, 121, 157, 158
addition 110
addiu 28, 121, 157, 158
addu 28, 121, 156, 159
alignment 43
American National Standards Institute 62
and 121, 160
andi 121, 161
ANSI 62
assembler 19
assembly directive 106

B
Backus-Naur 119
base address for assembly 109
BCzF 28
BCzT 28
beq 121, 162
BEQL 28
bgez 121, 163
bgezal 121, 164, 168
BGEZALL 28
BGEZL 28

bgtz 121, 165
BGTZALL 28
BGTZL 28
big-endian 32, 34
bitwise and 110
bitwise exclusive or 110
bitwise or 110
blez 121, 166
BLEZL 28
bltz 121, 167
bltzal 121
BLTZALL 28
BLTZL 28
bne 121, 169
BNEL 28
BNF 119
BNF Specification of the RSP Assembly Language 119
borrow in 37
branch 132
branch target 43
break 28, 46, 122, 170
breakpoint 170
buildtask 21, 136, 139, 140
built-in register names 112
bypass (pipeline) 44
bypassing 44
byte ordering, big-endian 34

C
c 112
C compiler 20
C programming language 20, 111
carry out 37
cc 20
cfc0 43
cfc2 43, 56, 72, 122, 171
chroma 185, 210
clamping 63
clip compare 37
CLK 133
CMD_BUF_READY 91
CMD_BUSY 82
CMD_CLOCK 82
CMD_CURRENT 82, 100, 101
CMD_END 82, 100, 101
CMD_PIPE_BUSY 82
CMD_START 82, 100, 101
CMD_STATUS 82
CMD_TMEM_BUSY 82
326

Revision 1.0 Index
colon 108, 109
comments 108, 119
complement 110
consecutive labels 109
constants 107, 109, 110, 126
control register 112
COP2 57
coprocessor 0 27, 33, 45, 81, 148
coprocessor 2 26, 27, 171
cpp 20, 108
CPU 24, 46
CPU-RSP semaphore 82, 97
Cray 23, 130, 132
ctc2 43, 56, 72, 122, 172

D
DADD 28
DADDI 28
DADDIU 28
DADDU 28
data dependency 130, 134
data memory 30
data recurrence 130
data section 20, 109
DCT rounding, MPEG 62, 306
DDIV 28
DDIVU 28
debugger 21, 22
debugging, microcode 145
decimal constants 107
delay slot 43
delayed load instructions 48
DF, pipeline stage 41
directive 109, 119
DIV 28
divide 75
division 110
DIVU 28
DMA 24, 29, 30, 48, 83, 96
DMA Examples 97
DMA FULL 96
DMA LENGTH 97
DMA READ length 82
DMA setup 96
DMA transfer 84, 135, 141, 143
DMA WRITE length 82
DMA_BUSY 82, 88, 91, 96
DMA_CACHE 82
DMA_DRAM 82

DMA_FULL 82, 88
DMA_READ_LENGTH 82
DMA_WRITE_LENGTH 82
DMEM 24, 30, 48, 95, 109, 126
DMULT 28
DMULTU 28
Doherty, Mary Jo 43
double precision add 37
double precision compare 37, 71
double precision multiply 63
double precision reciprocal 79
DPC_SET_XBUS_DMEM_DMA 101
DRAM 48
DSLL 28
DSLL32 28
DSLLV 28
DSRA 28
DSRA32 28
DSRAV 28
DSRL 28
DSRL32 28
DSRLV 28
DSUB 28
DSUBU 28
dual execution 128, 134
dual issue 39, 43

E
element 34, 58, 75, 123
ELF 19, 20, 21, 127, 139
EX, pipeline stage 41
exception 46
exception handling 46
exceptions 27
expression 109, 110, 111, 122
expression operators 110

F
floating point 27
flushed 90
forwarding 44
forward-referencing symbol 111
fourth 52
frozen 90

G
Gameshop 22, 145
gbi2mem 146
GCLK 90, 91
327

Nintendo Ultra 64 RSP Programmer’s Guide
guDumpGbiDL() 146
gvd 21, 22, 145

H
h 113
half 52
halves 58
hazard 43
Heinrich, J. 17
Hennessy, J. 16
hexadecimal constants 108
host I/O interface 146

I
identifier 107, 109, 110, 111, 123
iexpression 111, 115, 116, 118, 123
IF, pipeline stage 41
IMEM 24, 29, 95, 106, 126
Indy 146
instruction 119
instruction fetch cycle 39
instruction memory 29
instruction ordering 39
integer expression 111, 114
interrupt 46, 85
interrupts 27
inverse quantization, MPEG 62, 285
ISA 16
I-type (instruction) 40

J
j 122, 173
jal 32, 122, 174
jalr 32, 175
Japanese Industrial Standards Committee 62
JISC 62
jr 121, 176
J-type (instruction) 40
jump tables 126

K
keywords 109

L
label 109, 119, 127
labels 109
lb 121, 177
lbu 121, 178
lbv 49, 122, 179

LD 27
LDC1 27
LDC2 27
LDL 27
LDR 27
ldv 49, 122, 180
lfv 49, 52, 122, 181
lh 121, 183
lhu 121, 184
lhv 49, 52, 122, 185
linker 21, 136
linking RSP objects 20
listing 20
LL 27
LLD 27
llv 49, 122, 187
load delay 56
load delay slot 48
loop inversion 131
loop unrolling 132
lpv 49, 52, 122, 188
lqv 49, 122, 189
lrv 49, 122, 190
lsv 49, 122, 191
ltv 54, 122, 192
lui 121, 193
luma 194, 229
luv 49, 52, 122, 194
lw 121, 196
lwc2 48
LWL 27
LWR 27
LWU 27

M
m4 21, 109
makerom 21
man 17
Mary Jo’s Rules 43
merge 71
mfc0 43, 197
mfc2 43, 56, 122, 198
MFHI 28
MFLO 28
MI_INTR_SP 46, 170
minus (unary) 110
MIPS assembly language 105, 106
MIPS coprocessor 0 27
MIPS coprocessor 1 27
328

Revision 1.0 Index
MIPS coprocessor 2 27
MIPS coprocessor extensions 25, 40, 106
MIPS Instruction Set Architecture 16, 25, 40, 47
MIPS R4000 Microprocessor User’s Manual 17, 40
mixed precision multiply 64
modulo 110
MPEG 62, 185, 210, 260, 285, 306, 308
MPEG specification 62
mtc0 43, 82, 199
mtc2 43, 56, 122, 200
mtf0 82
MTHI 28
MTLO 28
MUL, pipeline stage 41
MULT 28
multimedia instructions 26
multiplication 110
MULTU 28

N
Newton-Raphson 78
nop 122
nor 121, 201, 202
normal VU loads and stores 50

O
octal constants 108
oddification, MPEG 62, 260
operator 107, 108, 109
or 121, 203
ori 121, 204
OS_READ 143
OS_TASK_YIELDED 149
OS_WRITE 143
osSpTaskStart() 142
osSpTaskYield() 148
OSTask 137, 140, 142, 145, 146, 147
overlay, microcode 21, 135

P
pack 52
packed VU loads and stores 52
parentheses 111
Patterson, D. 16
PC 29, 95
PIPE_BUSY 91
pipeline delay 130, 134
pipeline depth 27
pipeline stall 39, 43, 44

plus (unary) 110
precedence, assembler expressions 111
profiling 133
program 119
program sections, RSP 109
programmed IO 144
pseudo-opcode 106

Q
q 113
quad 50
quarters 58

R
R4000 25
R4000 instruction set 27, 40, 105
Rambus 135
RCP 24
rcp.h 31, 144, 148
RD, pipeline stage 41
RDP clock counter 82
RDP command buffer 82, 88
RDP command buffer BUSY 82
RDP COMMAND END 91
RDP Command FIFO 100
RDP COMMAND START 91
RDP pipe BUSY 82
RDP status 82, 90
RDP TMEM BUSY 82
Reality Signal Processor 23
reciprocal 76
register conflict (see also "register hazard") 39
register halves 113
register hazard 43
register quarters 113
registers 112
remainder 110
rest 50
RISC 16, 23, 44
rmonPrintf() 146
rounding 62
rsp (simulator) 21, 22, 31, 145
RSP boot microcode 142
RSP clock 26
RSP interrupt 170
RSP Program Counter 95
RSP simulator 133
RSP status 82, 85, 86
RSP status register 46, 170
329

Nintendo Ultra 64 RSP Programmer’s Guide
RSP yielding 147
rsp.h 82
rsp2elf 19, 20, 21, 139
rspasm 19, 20, 21, 31, 105, 136
rspboot 145
rspg (simulator) 21, 22, 145
R-type (instruction) 40

S
sb 121, 205
sbv 49, 122, 206
SC 27
scalar element of a vector register 112
scalar half 35, 58
scalar instruction 113, 119
scalar quarter 35, 58
scalar register 112
scalar unit 25
SCD 27
SD 27
SDC1 27
SDC2 27
SDL 27
SDR 27
sdv 49, 122, 207
semaphore 88
sfv 49, 52, 122, 208
sh 121, 209
shift left 110
shift right 110
shv 49, 52, 122, 210
SIG0 148
SIG1 148
signal 0 85, 148
signal 1 85, 148
signal 2 85
signal 3 85
signal 4 85
signal 5 85
signal 6 85
signal 7 85
SIMD 16, 23, 128, 129, 130
single issue 43
single-step 85
slave processor 27, 45
sll 121, 211
sllv 121, 212
slt 121, 213
slti 28, 121, 214, 215

sltiu 28, 121, 214, 215
sltu 121, 216
slv 49, 122, 217
software pipelining 130
SP_RESERVED 82
SP_SET_YIELD 148
SP_STATUS 82
SP_STATUS_BROKE 170
SP_STATUS_INTR_BREAK 170
SP_UCODE_DATA_SIZE 126
SP_YIELDED 148
sptask.h 142
spv 49, 52, 122, 218
square root 76
sqv 49, 122, 219
sra 121, 220
srav 121, 221
srl 121, 222
srlv 121, 223
srv 49, 122, 224
ssv 49, 122, 225
statements 107, 113
status register, RSP 28, 148
string constants 108
stv 54, 122, 226
SU 25
sub 121, 227
subtraction 110
subu 121, 228
suv 49, 52, 122, 229
sw 121, 230
swap, microcode 135
swc2 48
SWL 27
SWR 27
swv 54, 122, 231
SYNC 28
SYSCALL 28
system control coprocessor 45

T
TEQ 28
TEQI 28
text section 20, 109
TGE 28
TGEI 28
TGEIU 28
TGEU 28
TLT 28
330

Revision 1.0 Index
TLTI 28
TLTIU 28
TLTU 28
TMEM 90, 93
TNE 28
TNEI 28
tokens 108
transpose VU loads and stores 54
traps 27

U
ucode.h 126
ucode_data 149
unsigned pack 52

V
v 112
vabs 67, 122, 232
vadd 67, 122, 234
vaddc 37, 67, 122, 236
vand 74, 122, 238
VCC 36, 38, 56, 70, 72, 112
VCE 38, 56, 112
vch 37, 38, 70, 72, 122, 240
vcl 37, 38, 70, 72, 122, 243
VCO 37, 38, 56, 68, 70, 112
vcr 37, 70, 73, 122, 246
vector add 68
vector carry out register 37
vector compare code register 36
vector compare extension register 38
vector computational instructions 112
vector control register 26, 112
vector divide 75, 78
vector instruction 47, 113, 119
vector loads, stores, and moves 35, 40, 47, 113
vector multiply 36, 64
vector register 26, 34, 112
vector register element 112, 113
vector select 37, 73
vector slice 34
vector unit 26, 34
vectorization 128
veq 37, 70, 122, 249
vge 37, 70, 122, 252
vlt 37, 70, 122, 255
vmacf 61, 122, 258
vmacq 61, 62, 122, 260
vmacu 61, 122, 262

vmadh 62, 122, 264
vmadl 61, 122, 266
vmadm 61, 122, 268
vmadn 61, 122, 270
vmov 75, 76, 122, 272
vmrg 37, 70, 122, 273
vmudh 62, 63, 122, 275
vmudl 61, 63, 122, 277
vmudm 61, 63, 122, 279
vmudn 61, 63, 122, 281
vmulf 61, 62, 63, 122, 283
vmulq 61, 62, 122, 285
vmulu 61, 62, 63, 122, 287
vnand 74, 122, 289
vne 37, 70, 122, 291
vnoop 75, 76, 122
vnop 294
vnor 74, 122, 295
vnxor 74, 122, 297
vor 74, 122, 299
vrcp 75, 76, 122, 301
vrcph 75, 76, 122, 303
vrcpl 75, 76, 77, 122, 304
vrnd 62
vrndn 61, 62, 122, 306
vrndp 61, 62, 122, 308
vrsq 75, 76, 122, 310
vrsqh 75, 76, 122, 312
vrsql 75, 76, 77, 122, 313
vsar 36, 68, 122, 315
vsub 67, 122, 317
vsubc 37, 67, 71, 122, 319
VU 26, 27
vxor 74, 122, 321

W
WB, pipeline stage 41
whitespace 107, 109, 112

X
XBUS 24, 90, 101
XBUS initialization 101
XBUS_DMEM_DMA 91
xor 121, 323
xori 121, 324

Y
yielding 147
331

	Version 1.1
	Nintendo Ultra64 RSP Programmer’s Guide

	Chapter 1
	Introduction

	Document Description
	What It Is
	What It Is Not
	Information Presentation

	RSP Software Development Tools
	rspasm
	cpp
	m4
	buildtask
	rsp2elf
	rsp, rspg
	Gameshop Debugger (gvd)
	Chapter 2
	RSP Architecture

	Overview
	Slave to the CPU
	Part of the RCP
	Figure 2-1 Block Diagram of the RCP

	R4000 Core
	Clock Speed
	Vector Processor

	Major R4000 Differences
	Pipeline Depth
	No Interrupts, Exceptions, or Traps
	Coprocessors
	Missing Instructions
	Modified Instructions

	IMEM
	Addressing
	Explicitly Managed

	DMEM
	Addressing
	Explicitly Managed Resource

	External Memory Map
	Scalar Unit Registers
	SU Register Format
	Figure 2-2 SU Register Format

	Register 0
	Register 31
	SU Control Registers

	Vector Unit Registers
	VU Register Format
	Figure 2-3 VU Register Format

	VU Register Addressing
	Computational Instructions
	Loads, Stores, and Moves

	Accumulator
	Figure 2-4 VU Accumulator Format

	VU Control Registers
	Vector Compare Code Register (VCC)
	Figure 2-5 VCC Register Format

	Vector Carry Out Register (VCO)
	Figure 2-6 VCO Register Format

	Vector Compare Extension Register (VCE)
	Figure 2-7 VCE Register Format

	SU and VU Interaction
	Dual Issue of Instructions

	RSP Instruction Set
	Instruction Formats
	SU Instruction Format
	VU Instruction Format

	Distinguishing SU and VU Instructions
	Illegal Instructions

	Execution Pipeline
	RSP Block Diagram
	Figure 2-8 RSP Block Diagram

	Mary Jo’s Rules
	1. VU register destination writes 4 cycles later (need 3 cycles between load and use). This applies to vector computational instructions, vector loads, and coprocessor 2 moves (mtc2).
	2. SU register load takes 3 cycles (need 2 cycles between load and use). This applies to SU loads and coprocessor moves (mfc0, cfc2, mfc2). SU computational results are available in the next cycle (see “SU is Bypassed” on page 44).
	3. Any load followed by any store 2 cycles later, causes a one cycle bubble. Coprocessor moves (mtc0, mfc0, mtc2, mfc2, ctc2, cfc2) count as both loads and stores.
	4. A branch target not 64-bit aligned always single issues.
	5. Branches:
	a. Can dual issue (with preceding instruction).
	b. No branch instruction permitted in a delay slot.
	c. Delay slot always single issues.
	d. Taken branch causes a 1 cycle bubble.

	Register Hazards
	SU is Bypassed
	Figure 2-9 Pipeline Bypassing

	Coprocessor 0
	Interrupts, Exceptions, and Processor Status
	Interrupts
	Exceptions
	Processor Status
	Chapter 3
	Vector Unit Instructions

	VU Loads and Stores
	Figure 3-1 VU Load and Store Instruction Format
	Table 3-1 VU Load/Store Instruction Summary
	Normal
	Figure 3-2 Long, Quad, and Rest Loads and Stores

	Packed
	Figure 3-3 Packed Loads and Stores
	Figure 3-4 Packed Load and Store Alignment

	Transpose
	Figure 3-5 Transpose Loads and Stores

	VU Register Moves
	Figure 3-6 VU Coprocessor Moves

	VU Computational Instructions
	Figure 3-7 VU Computational Instruction Format
	Table 3-2 VU Computational Instruction Opcode Encoding
	Using Scalar Elements of a Vector Register
	Table 3-3 VU Computational Instruction Element Encoding
	Figure 3-8 Scalar Half and Scalar Quarter Vector Register Elements

	VU Multiply Instructions
	Figure 3-9 VU Multiply Opcode Encoding
	Table 3-4 VU Multiply Instruction Summary
	Figure 3-10 Double-precision VU Multiply
	Vector Multiply Examples

	VU Add Instructions
	Figure 3-11 VU Add Opcode Encoding
	Table 3-5 VU Add Type Encoding
	Vector Add Examples

	VU Select Instructions
	Figure 3-12 VU Select Opcode Encoding
	Table 3-6 VU Select Type Encoding
	Vector Select Examples

	VU Logical Instructions
	Figure 3-13 VU Logical Opcode Encoding
	Table 3-7 VU Logical Type Encoding

	VU Divide Instructions
	Figure 3-14 VU Divide Opcode Encoding
	Table 3-8 VU Divide Type Encoding
	Table 3-9 VU Divide Instruction Summary
	Reciprocal Table Lookup
	Higher Precision Results
	Vector Divide Examples
	Chapter 4
	RSP Coprocessor 0

	Register Descriptions
	RSP Point of View
	Table 4-1 RSP Coprocessor 0 Registers
	$c0
	$c1
	$c2, $c3
	Figure 4-1 DMA Transfer Length Encoding

	$c4
	Table 4-2 RSP Status Register
	Table 4-3 RSP Status Write Bits

	$c5
	$c6
	$c7
	$c8
	$c9
	$c10
	$c11
	Table 4-4 RDP Status Register
	Table 4-5 RSP Status Write Bits (CPU VIEW)

	$c12
	$c13
	$c14
	$c15

	CPU Point of View
	Table 4-6 RSP Coprocessor 0 Registers (CPU VIEW)
	Other RSP Addresses
	Table 4-7 Other RSP Addresses (CPU VIEW)

	DMA
	Alignment Restrictions
	Timing
	DMA Full
	DMA Wait
	DMA Addressing Bits
	CPU Semaphore
	DMA Examples
	Figure 4-2 DMA Read/Write Example
	Figure 4-3 DMA Wait Example

	Controlling the RDP
	How to Control the RDP Command FIFO
	Examples
	Figure 4-4 RDP Initialization Using the XBUS
	Figure 4-5 OutputOpen Function Using the XBUS
	Figure 4-6 OutputClose Function Using the XBUS

	Chapter 5
	RSP Assembly Language

	Different From Other MIPS Assembly Languages
	Why?
	Major Differences from the R4000 Instruction Set

	Syntax
	Tokens
	Identifiers
	Constants
	Operators
	Comments
	Program Sections
	Labels
	Keywords
	Expressions
	Expression Operators
	Table 5-1 Expression Operators
	Operator
	Meaning

	Precedence
	Table 5-2 Expression Operator Precedence
	least binding, lowest precedence:
	binary +,-
	...
	most binding, highest precedence

	Expression Restrictions

	Registers
	Vector Register Element Syntax
	Program Statements

	Assembly Directives
	.align
	.bound
	.byte
	.data
	.dmax
	.end
	.ent
	.half
	.name
	.print
	.space
	.symbol
	.text
	.unname
	.word

	BNF Specification of the RSP Assembly Language
	Chapter 6
	Advanced Information

	DMEM Organization and Usage
	Jump Tables
	Constants
	Labels in DMEM
	Dynamic Data
	Diagnostic Information

	Performance Tips
	Dual Execution
	Vectorization
	Software Pipelining
	Loop Inversion
	Loop Unrolling
	Program Flow of Control

	Profiling RSP Code
	Figure 6-1 Real-time Clock Watching on the RSP

	Microcode Overlays
	Memory System Implications
	Entirely Up to You
	RSP Assembler Tricks
	A Sample RSP Linker
	Figure 6-2 buildtask Operation

	Overlay Example
	Overlay Makefile
	Overlay DMEM Initialization
	Overlay Initialization Code
	Overlay Decision Code
	Overlay DMA Code

	Controlling the RSP from the CPU
	Starting RSP Tasks
	RSP Boot Microcode

	Hidden OS Functions
	__osSpDeviceBusy
	__osSpRawStartDma()
	__osSpRawReadIo()
	__osSpRawWriteIo()
	__osSpGetStatus()
	__osSpSetStatus()
	__osSpSetPc()

	Microcode Debugging Tips
	RSP Yielding
	Requesting a Yield
	Checking for Yield
	Yielding
	Saving a Yielded Process
	Restarting a Yield Process
	Appendix A
	RSP Instruction Set Details
	Table A-1 RSP Instruction Operation Notations

	Symbol
	Meaning
	Instruction Notation Examples

