a2 United States Patent
Miller

(10) Patent No.:
5) Date of Patent:

US 6,604,161 Bl
Aug. 5, 2003

(549) TRANSLATION OF PCI LEVEL
INTERRUPTS INTO PACKET BASED
MESSAGES FOR EDGE EVENT DRIVE
MICROPROCESSORS

(75) Inventor: Steven Miller, Livermore, CA (US)

(73) Assignee: Silicon Graphics, Inc., Mountain View,
CA (US)

otice: ubject to any disclaimer, the term of this
*) Noti Subj y disclai h f thi
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/408,084

(22) Filed: Sep. 29, 1999
(51) Int. CL7 oo GO6F 13/24
(52) US.ClL ... 710/260; 710/262; 710/263
(58) Field of Searchccccccoveeviennne. 710/260-266
(56) References Cited
U.S. PATENT DOCUMENTS
5,727,219 A * 3/1998 Lyon et al. 710/268
5,915,104 A 6/1999 Miller 395/309
5,953,511 A 9/1999 Sescila, III et al. 395/309

5,956,516 A * 9/1999 Pawlowski 710/260
6,003,109 A * 12/1999 Caldwell et al. 710/262

OTHER PUBLICATIONS

“Address Munging Support in a Memory Controller/PCI
Host Bridge for the PowerPC 603 CPU Operating in 32-Bit
Data Mode”, IBM Technical Disclosure Bulletin, 38, (Sep.,
1995),237-240.

* cited by examiner

Primary Examiner—Rupal Dharia
(74) Antorney, Agent, or Firm—Schwegman, Lundberg,
Woessner & Kluth, P.A.

(7) ABSTRACT

Translation of PCI level interrupts into packet based mes-
sages for edge event drive microprocessors includes, a
bridge device receiving interrupts via an interrupt line from
one or more PCI devices. The bridge device further sends an
interrupt write packet to a CPU to launch the interrupt
routine. The interrupt routine services the interrupt and the
PCI device negates the interrupt line. At this point, the CPU
generates a non-blocking write. This write causes the bridge
to check the level of the PCI interrupt line. If the line is
active with the interrupt, another write packet is sent,
otherwise the interrupt line is negated and the blocking write
is ignored. As a result, the present invention prevents an
interrupt from a PCI device from being overlooked, from
being missed, or from repeating the interrupt by a micro-
processor. Also the present subject matter includes an error
detection and containment system, which upon receiving a
write packet from a PCI device via a PCI bus, the bridge
device checks, encodes with source information, and flags
the write requests having errors. Then a memory controller
coupled to the bridge device receives the write requests and
suppresses all write requests and disables all future write
requests and interrupts coming from that PCI device having
error. As a result, the present invention further prevents the
write requests and interrupts from an invalid PCI device
from corrupting the memory, to prevent the computer enter-
ing an unrecoverable state.

11 Claims, 6 Drawing Sheets

//mo
110
»
PCI
CPUs 170 DEVICE
160 130 1254
PACKET BASED INTERRUPT LIN
MEMORY = —~ —
CONTROLLER | _INTERCONNECT _| BRIDGE PCI BUS (
))
120

MEMORY R~ 180

U.S. Patent Aug. 5, 2003 Sheet 1 of 6 US 6,604,161 B1

160 130 125
PACKET BASED INTERRUPT LIN
MEMORY = —~ —
CONTROLLER| _INTERCONNECT _| BRIDGE PCI BUS (
¢)
120
MEMORY 180

FIG. 1

U.S. Patent Aug. 5, 2003 Sheet 2 of 6 US 6,604,161 B1

(START)
‘ 210
INTERRUPTS GENERATED BY A PCI DEVICE
220
CONVEYING THE INTERRUPTS
OVER THE INTERRUPT LINE
250
RECEIVING THE INTERRUPTS BY A
BRIDGE DEVICE VIA THE INTERRUPT LINE
/J24O
UPON RECEIVING THE INTERRUPT, THE BRIDGE
ENCODES THE INTERRUPT WITH SOURCE INFORMATION

250

~
IGNORE THE WRITE AND SEND
INTERRUPT ROUTINE TO CPU

260

GENERATE AN INTERRUPT WRITE PACKET
+ 270

LAUNCH AND SERVICE THE INTERRUPT ROUTINE
+ 280

CLEAR THE INTERRUPT

* 290

~
CPU GENERATES NON-BLOCKING
WRITE TO THE BRIDGE

FIG. 2

U.S. Patent

Aug. 5, 2003 Sheet 3 of 6

US 6,604,161 Bl

FIG. 2A

FIG. 2B

205
|NT* _L>\
210
222
INT1* ———L\
225
INT2*
227
INT*
230
252
INT1* *L\
455
INT2*
457
INT*
260

FIG. 2C

U.S.

Patent Aug. 5,2003 Sheet 4 of 6 US 6,604,161 B1
110
130 520 N DISK DRIVES
BRIDGE CEXTRA) CEXTRA) CEXTRA)
PCI BUS T I T BUS 6
170
CPUs SINGLE—ENDED LINKS
C DI¢) C D,
MEMORY ROGE Pel BUS [BUS A
CONTROLLER — pCl BUS C . C) C l)BUS .
MEM SINGLE-ENDED LINKS
180
eoi aUs . O C O C .)BUSZ
BRIDGE C)¢ N (D)
FIG. 3
u CPUs 170 330
_______ el e o e ——
360 I_ BRIDGE _l
| |
MEMORY : REQUEST | PCI | pCI BUS
CONTROLLER : GENERATOR SLAVE ‘—F—P—SI 00
| |
I 440 430 |
- - - _
MEMORY | 180

U.S. Patent Aug. 5, 2003 Sheet 5 of 6 US 6,604,161 B1
300 310
AN 130 500 N DISK DRIVES
BRIDGE Pchus @RwIn@(1) (C . D)
[RG5HPS5 BUS 5
RG5 o0l BUS CExTRA) CEXTRA) CEXTRA)
RG6 HPS6 . ! . BUS 6
370
Dl CPUs] SINGLE-ENDED LINKS
BRIDGE ol BUS C DI¢ N (D)
260 MEMORY PSA ! ' L—BUS A
CONTROLLER| . PCl BUS C_ C C D)
~—| [RGBH{PSB . ' ' BUS B
MEM SINGLE—-ENDED LINKS
180
BRIDGE PCl BUS Q.——DL—u—) (—1—>
RG2HPS2 BUS 2
PCl BUS C) C) C)
RGTH PS? . ' ' BUS 1
440 430

FIG. 5

U.S. Patent

Aug. 5, 2003 Sheet 6 of 6
(SIART)
Y 610

WRITE TRANSACTIONS
GENERATED BY A PCI DEVICE

620

BRIDGE ACCEPTS WRITE TRANSACTION
FROM PCI DEVICE VIA PCI BUS

630

PROCESSOR CHECKS FOR PARITY
ERROR BASED ON ADDRESS OR DATA

‘ 640

Yot
TRANSLATING WRITE TRANSACTION INTO
WRITE REQUEST PACKETS BY THE PROCESSOR

1 630

PROCESSOR ENCODES THE WRITE REQUEST
PACKETS WITH SOURCE INFORMATION OF THE PCI
DEVICE ASSOCIATED WITH THE WRITE REQUEST

1 660

PROCESSOR ENCODES THE WRITE REQUEST
PACKETS WITH DESTINATION INFORMATION

US 6,604,161 Bl

670
PROCESSOR FLAGS THE WRITE
REQUEST PACKETS HAVING ERROR
680
o
MEMORY CONTROLLER CHECKS
FOR THE PRESENCE OF FLAG
686
NO WRITE
T0 MEMORY
690

SUPPRESS WRITE REQUEST PACKETS

AND DISABLE ALL FUTURE WRITE TRANSACTIONS

FROM THE ASSOC

IATED PCI DEVICE

695

FOLLOW ERROR HANDLING ROUTINE TO
RE-ENABLE THE DISABLED PCI DEVICE

FIG. 6

US 6,604,161 B1

1

TRANSLATION OF PCI LEVEL
INTERRUPTS INTO PACKET BASED
MESSAGES FOR EDGE EVENT DRIVE
MICROPROCESSORS

FIELD OF THE INVENTION

The present invention is related to input/output(I/O) archi-
tecture of a computer system, and more particularly to an
interrupt handling subsystem of the I/O architecture.

BACKGROUND INFORMATION

Today’s computer systems are very advanced, versatile,
and sophisticated. Especially these computers are now com-
monly called upon to accept and process data from a wide
variety of Peripheral Component Interconnect (PCI) devices
such as network devices, modems, tape drives, disk drives,
network controllers, Ethernet, ATM, graphic devices,
pointers, keyboards, serial ports and printers via a PCI bus.
Generally a bridge device is interposed between different
bus schemes and acts as an interface between the bus and
main memory/microprocessor (CPU). All write and interrupt
operations involving PCI devices are routed to/from a PCI
device via the PCI bus and an interrupt line respectively,
through the bridge, to a memory controller and to/from the
main memory. For example, during an interrupt transfer
from the PCI device, the interrupt is translated into one or
more write packets and sent to the microprocessor through
the bridge and the memory controller. Further, during a data
transfer to memory from the PCI device (memory writes),
the PCI write operation is translated into one or more
packets and sent to the main memory and/or microprocessor
through the bridge and the memory controller. Generally all
of the interrupts are level-based and level sensitive. Where
as most of the new microprocessors want edge-based
interrupts, which basically means that when an interrupt is
asserted, the processor will then go into its interrupt service
routine and service the input, and on the way out it exits the
interrupt and clears the interrupt it exits, if the interrupt is
still active it immediately jumps back in. Level-based means
as long as the interrupt is at that level, the CPU has to go
back in to execute the interrupt routine. Where as in the case
of edge-based interrupts, all we need is an edge, you need an
active occurrence. If the interrupt is not in transition, then
the microprocessor does not have to go back to back to
execute the interrupt routine. In general the input/output
subsystem is connected via a packet or switch based network
so that the packet is essentially an edge. An edge is an event
that happens. Many of the new microprocessors are actually
based on this edge-based interrupts. When there is multiple
interrupts within the interrupt line, there is a chance that the
microprocessor may not see the transition between the
interrupts if the interrupts are level based. In situations like
these the standard software solution to this problem would
be to pole some register inside the bridge to wait for
interrupt line to go high, so that the microprocessor can
detect the next interrupt. Polling a bridge register while in
the interrupt routine can take a microsecond or two and
that’s thousands of processor instruction cycles that the
microprocessor is waiting. During this time the micropro-
cessor cannot do anything, because the processor is waiting
for the interrupt routine to complete and during this time the
processor is not allowing other interrupts to be processed.
This is wasting a lot of processor time.

Interrupts are transferred over the same path as memory
write operations from PCI devices. If writes contain errors,

10

15

20

25

30

35

40

45

50

55

60

65

2

these errors can corrupt memory or generate false interrupts.
Corrupted memory and false interrupt can cause the com-
puter to enter an unrecoverable state.

Thus, there is a need for an improved interrupt detection
and translation system and method from the PCI devices on
a PCI bus to prevent the computer system from missing an
interrupt.

In addition, there is also a need for an improved error
detection and containment system from PCI devices on a
PCI bus to prevent the computer system from corrupting
memory when errors occurs, and allowing the system to
recover from the errors. Also there is a need to prevent the
computer systems from generating false interrupts due to
write errors. Further, there is also a need to increase the
uptime of the computer system.

SUMMARY OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
problems are addressed by the present invention, which will
be understood by reading and studying the following speci-
fication. The present system provides, among other things,
an improved interrupt handling and translation and an
improved error detection and containment from PCI devices.

According to one aspect of the present invention, inter-
rupts are received by a bridge device via an interrupt line
from one or more PCI devices. Then the bridge device
encodes the interrupt with source and destination
information, and sends an interrupt write packet to a micro-
processor (CPU) through the memory controller to launch an
interrupt routine. The interrupt routine services the interrupt
and the PCI device negates the interrupt line. At this point,
the CPU generates a non-blocking write rather than a
blocking read to the bridge device. This write causes the
bridge device to check the level of the PCI interrupt line. If
the line is asserted (i.e., if the interrupt is still active in the
interrupt line), then another write packet is sent by the bridge
device, otherwise the interrupt line is negated, and the
blocking write is ignored. As a result, the present invention
prevents an interrupt from a PCI device from being
overlooked, from being missed, or from repeating the inter-
rupt by the PCI device. Furthermore, non-blocking write is
used to write the interrupts to the registers contained in the
bridge, the processor does not waste any cycles waiting for
an interrupt from the bridge.

According to another aspect of the present invention,
write transactions are received by a bridge via a Peripheral
Component Interconnect (PCI) bus from PCI devices. Then
the bridge checks the write transactions for parity errors.
Further the bridge encodes the write transactions and the
interrupts with the source and destination information and
translates them into one or more packets of write requests.
Then the bridge device flags the packet of write requests
having errors. Then a memory controller coupled to the
bridge device checks the write request packets for the error
flag. If the flag is not set, then the memory controller
transfers the write requests, and if the flag is set, then the
memory controller suppresses the write requests, and dis-
ables all future write requests and interrupts from the PCI
device associated with the write request containing the error.
As a result, the present invention prevents the write requests
and interrupts from an invalid PCI device from writing to the
memory to prevent corrupting the memory in the computer
system and stopping the entire input/output subsystem.
Further, this also prevents losing of all data in the memory
and increases the “up-time” of the computer system. Other
aspects of the invention will be apparent on reading the

US 6,604,161 B1

3

following detailed description of the invention and viewing
the drawings that form a part thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating generally one
embodiment of the computer system including the present
subject matter.

FIG. 2 is a flowchart illustrating generally one embodi-
ment of the operation of the present subject matter.

FIGS. 2a, 2b, and 2¢ are graph/line diagrams illustrating
generally embodiments of executing one or more level-
based interrupts.

FIG. 3 is a block diagram illustrating generally one
embodiment of the computer system including the present
subject matter.

FIG. 4 is a block diagram illustrating generally one
embodiment of the computer system including an error
detection and containment sub system.

FIG. 5 is a detailed block diagram illustrating generally
one embodiment of the bridge device including the error
detection and containment sub system.

FIG. 6 is a block diagram illustrating generally one
embodiment of the use of dedicated PCI slaves and request
generators in the bridge devices for each of the PCI buses
coupled to the respective bridge devices.

DETAILED DESCRIPTION

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings that form a part hereof, and in which are shown by way
of illustration specific embodiments in which the invention
may be practiced. It is understood that other embodiments
may be utilized and structural changes may be made without
departing from the scope of the present invention.

The leading digit(s) of reference numbers appearing in the
figures generally corresponds to the figure number in which
that component is first introduced, such that the same
reference number is used throughout to refer to an identical
component which appears in multiple figures. Signals and
connections may be referred to by the same reference
number or label, and the actual meaning will be clear from
its use in the context of the description.

In this document interrupt line is asserted is understood to
refer to that there are multiple interrupts overlapping in the
interrupt line and the processor will not be able to detect the
transition between interrupt signals. Further, in this docu-
ment parity error is understood to refer to a technique of
checking whether data has been lost or written over when
it’s moved from one place in storage to another.

GENERAL SYSTEM OVERVIEW

This document describes, among other things, a system
and method of translation of PCI level interrupts into packet
based messages for microprocessors based on edge event.
This is accomplished by a bridge device by encoding the
interrupt with source and destination information, and issu-
ing an interrupt write packet to a microprocessor (CPU)
through a memory controller to launch an interrupt routine.
The interrupt routine services the interrupt and the PCI
device negates the interrupt line. At this point the CPU
generates a non-blocking write to the bridge device. This
write causes the bridge to check the level of the PCI interrupt
line. If the line is active, another write packet is sent,
otherwise the interrupt line is negated, and the blocking
write is ignored.

10

15

20

30

35

40

45

50

55

60

65

4

Further, this document describes, a system and method of
error detection and containment from PCI devices on a PCI
bus. This is accomplished by encoding the write requests/
packets coming from the PCI devices via a PCI bus, and
flagging the write requests/packets having error and block-
ing the requests/packets having the flag set, and also block-
ing all future write requests and interrupts from the device
associated with requests/packets having the error, and thus
preventing the writing of packets containing the error to the
memory, and further preventing losing of all data in memory,
and from stopping the entire input/output subsystem.

FIG. 1 is a block diagram illustrating generally, by way of
example, but not by way of limitation, one embodiment of
the computer system including the present subject matter
100, the bridge device 130 receives the interrupts generated
by the PCI devices 110 via the interrupt line 125. Bridge
device 130 encodes the interrupt with source and destination
information. Then the bridge device 130 sends an interrupt
write packet. The interrupt write packet is transmitted to
CPU 170 through a memory controller 160 to launch an
interrupt routine. The interrupt routine services the interrupt
and the PCI device 110 negates the interrupt line. At this
point the CPU 170 generates a non-blocking write rather
than a blocking read to the bridge device 130. This write
causes the bridge device to check the level of the PCI
interrupt line. If the line is asserted (i.e., the interrupt line is
active with the interrupt), another write packet is sent,
otherwise the interrupt line is negated and the blocking write
is ignored. A packet of data generally refers to a minimum
unit of data transfer over one of the links. A link is defined
as the physical connection from the bridge device to any of
the connected devices. Packets can be one of several sizes
ranging from a double word (i.e., 8 bytes) to a full cache size
line (i.e., 128 bytes) plus a header. Packets are comprised of
a 32 bit command word and some or all of the following: a
48 bit address, 16-bit remote map field, data field, and a data
enable word. The command word contains destination and
source identification numbers, packet type, transaction
number, data size, arbitration and control bits.

FIG. 2 is a flow chart illustrating generally, by way of
example, but not way of limitation, one embodiment of
operation of the computer system of the present subject
matter 100. Interrupts generated by a PCI device 210, are
received by a bridge device 130 via an interrupt line 220/
230. Upon receiving the interrupt the bridge device 130
encodes the interrupt with source and destination informa-
tion. Also upon receiving the interrupt the bridge device 130
issues an interrupt write packet and transmits the interrupt
write packet to CPU 170 through the memory controller 160
to start the interrupt routine 260/270. At the completion of
the interrupt routine, the CPU 170 clears the interrupt 280.
At this point the CPU 170 generates a non-blocking write
rather than a blocking read 290 to the bridge device 130.
This write causes the bridge device 130 to check level of the
PCI interrupt line 245. If the line is asserted, another
interrupt write packet is sent to the CPU, otherwise the
interrupt line is negated and the write is ignored 250.

FIG. 24 is a graph/line diagram illustrating generally, by
way of example, but not by way of limitation, one embodi-
ment of executing a level-based interrupt generated by a PCI
device 110. Interrupt (INT) 205 generated by a PCI device
110 is converted to a write packet and an edge event sent to
a CPU 170 through a memory controller 160 (interrupt
asserts) 210, then the CPU starts the service routine 215, and
then the interrupt routine clears the interrupt and exits 220.

FIG. 2b is a graph/line diagram illustrating generally, by
way of example, but not by way of limitation, one embodi-

US 6,604,161 B1

5

ment of a situation in which there are two level-based
interrupts in the interrupt line 125. Interrupt 1 (INT1) 222
asserts and write packet and an edge event sent 230 to a CPU
170 through a memory controller 160. CPU 170 starts the
interrupt routine 235. CPU exits and clears the interrupt
routine after completion of the routine 240. Interrupt 2
(INT2) 225 asserts 240, since there is no transition between
the interrupts, no level seen by the CPU 170 and therefore
no packet sent and interrupt missed 245.

FIG. 2¢ is a graph/line diagram illustrating generally, by
way of example, but not by way of limitation, one embodi-
ment of a situation in which there are two or more level-
based interrupts in the interrupt line 125, and including the
method of the present subject matter to circumvent the
problem of missing the interrupts by the CPU 170. Interrupt
1 (INT1) 222 asserts and write packet sent 260 to a CPU 170
through a memory controller 160. CPU 170 starts the
interrupt routine 265. CPU exits and clears the interrupt
routine after completion of the routine 270. Interrupt 2
(INT2) 225 asserts 270, if there is more than one interrupt
in the interrupt line 125 (line asserted), bridge 130 writes to
the register and generates an interrupt write packet 270 and
sends it to CPU 170 through the memory controller 160.
CPU 170 starts the interrupt INT2 routine 280. If there are
no interrupts in the interrupt line 125 (line not asserted), then
the write is ignored and the interrupt INT2 is sent to CPU
170 to execute the interrupt routine.

FIG. 3 is a block diagram illustrating generally, by way of
example, but not by way of limitation, one embodiment of
the computer system, incorporating error containment and
detection system into the present subject matter 100. In FIG.
3, the computer system having fault detection and retention
system includes, for example, a memory controller 160
which facilitates transfer of data between one or more
microprocessors 170 and main memory 180, which is com-
posed of DRAM SIMMs. A bridge device 130 is connected
to the to the memory controller 160 on one end and acts as
an interface, so that various off-the-shelf PCI devices 110
(e.g., printers, monitors, modems, disk drives, etc.,) may be
coupled to the bridge device 130 via a PCI bus 120.

In general terms, bridge device 130 receives the write
transactions generated by the PCI devices 110 via PCI bus
120. At this point the bridge device 130 checks the write
transactions for errors, and translates the write transaction
into packets of write requests. Further, the bridge device 130
flags the write requests if an error is found and encodes the
write requests with destination and source information. A
packet of data refers to a minimum unit of data transfer over
one of the links. A link is defined as the physical connection
from the bridge device to any of the connected devices.
Packets can be one of several sizes ranging from a double
word (i.e., 8 bytes) to a full cache size line (i.e., 128 bytes)
plus a header. Packets are comprised of a 32 bit command
word and some or all of the following: a 48 bit address,
16-bit remote map field, data field, and a data enable word.
The command word contains destination and source identi-
fication numbers, packet type, transaction number, data size,
arbitration and control bits. One or more packets of data are
transmitted from one or more source devices 110 over
established links such as PCI bus 120 through the bridge
device 130 to one or more destination devices such as
memory controller 160. After flagging and encoding of the
write requests by the bridge device 130, the write request
packets are received by the memory controller 160, where
the memory controller checks the write request packets to
see whether the flag is set (set by the bridge device 130 if an
error is found in the write request packets). If the flag is set

10

15

20

25

30

35

40

45

50

55

60

65

6

in the write request packet, then the memory controller 160
suppresses the write request and disables all future write
transactions and interrupts from the associated PCI device.
If the flag is not set, then the memory controller 160
transmits the write request to the memory 180. In one
embodiment the system 100 has an error handling routine to
re-enable the disabled PCI devices 110 by the memory
controller 160 due to the presence of a parity error in the
write request coming from that device. In another
embodiment, the system checks for parity errors based on
address and data.

In one embodiment, the bridge device 130 includes a PCI
slave 430 coupled to a request generator 440 as shown in the
exemplary detailed block diagram of FIG. 4. PCI slave 430
receives the write transactions generated by the PCI devices
110 via PCI bus 120 and checks the write transactions for the
presence of an error. Then the write transactions are received
by the request generator 440. At this point, the request
generator 440 is responsible for packet generation, address
translation, encoding the packet with source and destination
information, and for flagging the packets for any errors
found by the PCI slave 430. A memory controller 160
coupled to the request generator 440 on the other end
receives the write requests encoded and flagged by the
request generator 440. Memory controller 160 and bridge
device 130, including PCI slave 430 and request generator
440 may include a microprocessor or other controller for
execution of software and/or firmware instruction.

FIG. § is a schematic block diagram that illustrates
generally, by way of example, but not by way of limitation,
one embodiment of the configuration of a computer system
of the present subject matter 100 incorporating an error
detection and containment system, showing the scheme of
having dedicated PCI slaves 430 and dedicated request
generators 440 for each of the PCI buses 120 coupled the
bridge devices 130 as shown.

FIG. 6 is a flow chart illustrating generally, by way of
example, but not way of limitation, one embodiment of
operation of the computer system 100 incorporating the
error detection and containment system having fault detec-
tion and containment system. Upon receiving the write
transactions 610/620 generated by a PCI device 110, bridge
device 130 checks for parity error 630. Then the bridge
device 130 translates the write transactions into write
request packets 640. Further the bridge device 130 encodes
the write request packets with source 650 and destination
660 information, and flags 670 the write requests having
error. At this point, a memory controller 160 receives the
write requests and checks for the presence of the flag 680.
The memory controller 160 suppresses the write requests if
the flag is set and disables all future write transactions and
interrupts from the associated PCI device 690 to prevent
losing of data in memory 180, and to prevent generating
false interrupts due to write errors. If the flag is not set by
the memory controller 160 transmits the write request to the
memory 180. In one embodiment, the system 100, has an
error handling routine 495 to re-enable the disabled PCI
device 110. In one embodiment, the system 100, checks the
parity error based on address, and in another embodiment,
the system 100, checks the parity error based on data 430.

It is understood that the above description is intended to
be illustrative, and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reviewing
the above description. The scope of the invention should
therefore, be determined with reference to the appended
claims, along with the full scope of equivalents to which
such claims are entitled.

US 6,604,161 B1

7

Conclusion

The above-described system provides, among other
things, a translation of PCI level interrupts into packet based
messages for edge event drive microprocessors. The present
system and method allows detection of the presence of
multiple interrupts in the interrupt line and issues an inter-
rupt write packet to circumvent the problem of overlooking,
missing or repeating an interrupt by a microprocessor. Also,
the above described system provides, a fault detection and
containment system for computer systems. The allows
detection of parity errors coming from write requests of
coupled PCI devices via PCI bus, and suppresses the write
requests and interrupts having error before writing to the
memory to prevent corrupting and losing of all data in the
memory, and hence to increase the up-time of the computer
systems.

It is understood that the above description is intended to
be illustrative, and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reviewing
the above description. The scope of the invention should,
therefore, be determined with reference to the appended
claims, along with the full scope of equivalents to which
such claims are entitled.

What is claimed is:

1. A computer system comprising:

one or more Peripheral Component Interconnect (PCI)
devices for generating interrupts;

an interrupt line for conveying the interrupts generated by
the PCI devices;

a bridge device, coupled to the interrupt line, for receiving
a first interrupt from the PCI devices via the interrupt
line, wherein, when the bridge device receives the first
interrupt, the bridge device generates a first interrupt
write packet; and

one or more microprocessors communicatively coupled to
the bridge device, wherein the one or more micropro-
cessors includes a first microprocessor, wherein the first
microprocessor receives the interrupt write packet from
the bridge device and initiates an interrupt routine
associated with the first interrupt; and

wherein the bridge device generates a second interrupt
write packet if an interrupt exists on the interrupt line
upon completion of the interrupt routine associated
with the first interrupt.

2. The computer system of claim 1, wherein the bridge
device includes a bridge register, wherein, when a write is
issued to the bridge register by one of the PCI devices, the
bridge device sends a interrupt write packet to the first
MIiCroprocessor.

3. A computer system comprising:

one or more Peripheral Component Interconnect (PCI)
devices for generating interrupts;

an interrupt line for conveying the interrupts generated by
the PCI devices;

a bridge device, coupled to the interrupt line, for receiving
the interrupts from the PCI devices via the interrupt
line, wherein, when the bridge device receives the
interrupts, the bridge device generates an interrupt
write packet;

one or more microprocessors communicatively coupled to
the bridge device, wherein the one or more micropro-
cessors includes a first microprocessor, wherein the first
microprocessor receives the interrupt write packet from
the bridge device and initiates an interrupt routine; and

10

15

20

25

30

35

45

50

55

60

65

8

a PCI bus coupled to the bridge device for receiving write
transactions generated by the PCI devices, wherein,
when the bridge device receives the write transactions,
the bridge device checks the write transactions for error
and flags the write transactions having an error,
wherein the bridge device further translates the write
transactions error into one or more write request pack-
ets.

4. A computer system comprising:

one or more Peripheral Component Interconnect (PCI)
devices for generating interrupts;

an interrupt line for conveying the interrupts generated by
the PCI devices;

a bridge device, coupled to the interrupt line, for receiving
the interrupts from the PCI devices via the interrupt
line, wherein, when the bridge device receives the
interrupts, the bridge device generates an interrupt
write packet;

one or more microprocessors communicatively coupled to
the bridge device, wherein the one or more micropro-
cessors includes a first microprocessor, wherein the first
microprocessor receives the interrupt write packet from
the bridge device and initiates an interrupt routine; and

wherein the computer system further comprises a PCI bus
connected to the bridge device and to the PCI devices,
wherein the bridge device comprises a PCI slave,
coupled to the PCI bus, for checking parity errors in
write transactions received from the PCI device.

5. The computer system of claim 4 wherein, the PCI slave
includes logic for disabling write transactions from PCI
devices that generated parity error in a write transaction.

6. The computer system of claim 4, wherein the bridge
device further comprises a request generator for encoding
the write transactions received from the PCI devices through
the PCI slave with destination and source information.

7. The computer system of claim 6, wherein the request
generator flags the write transactions when a parity error is
found by the PCI slave.

8. The computer system of claim 6, where in the request
generator includes logic for encoding interrupts received
from the interrupt line.

9. A method of processing interrupts received from PCI
devices, the method comprising:

receiving an interrupt;

constructing an interrupt write packet, wherein the inter-

rupt write packet includes a PCI device identifier and a
destination address;

transmitting the interrupt write packet to a CPU;

receiving the interrupt write packet at the CPU;

starting an interrupt routine associated with interrupt;

generating a non-blocking write;

checking whether the interrupt is still active; and

if the interrupt is still active, generating a new interrupt

write packet to the CPU.

10. The method of claim 9, wherein, if the interrupt is not
still active, the non-blocking write is ignored.

11. The method of claim 9, wherein receiving an interrupt
includes determining if the PCI device was disabled due to
a parity error, and if the PCI device was disabled due to
parity error, suppressing the interrupt.

#* #* #* #* #*

